华为昇腾310B1平台深度学习算法模型转换

2024-05-10 11:20

本文主要是介绍华为昇腾310B1平台深度学习算法模型转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 模型转换(集成nms算子到模型中)

1.1 基础模型说明

1.2 模型转换

1.2.1 设置环境变量

1.2.2 安装yolov5依赖(gcc需要>7.5)

1.2.3 转换fp16模型

2 模型转换(使用atc,不集成nms算子)

参考文献:


1 模型转换(集成nms算子到模型中)

1.1 基础模型说明

对于Yolov5模型,华为提供了单独的脚本执行转换,目的通过自定义的Yolov5后处理算子将NMS操作集成到离线模型中,提高推理性能。Yolov5模型转换脚本位于计算库的ascend_yolov5_pt2om,模型转换时使用官方原始yolov5s-v6.1为基础训练的人车非.pt模型,该模型有3个输出。转换工具会自动将3个输出合并为一个输出,并转为onnx模型,之后再转为om模型。默认精度为FP16。

对于INT8,当前转换工具量化后准确率有下降,对于实时性强的场景不适合,暂不使用。

ascend_yolov5_pt2om已上传到csdn资源(你自己的百度网盘里面也有一份)https://download.csdn.net/download/u013171226/89286331?spm=1001.2014.3001.5501

1.2 模型转换

模型转换主要是将.pt模型转为Ascentd可推理的.om模型,包括三种数据类型(fp16、fp32和int8),模型转换过程下。模型转换使用ascend_yolov5_pt2om工程实现。

1.2.1 设置环境变量

source /usr/local/Ascend/ascend-toolkit/set_env.sh 

1.2.2 安装yolov5依赖(gcc需要>7.5)

pip install -r requirements.txtpip install onnx
pip install onnxruntime==1.6.0
pip install onnxsimpip install opc-tool==0.1.0
pip install decorator 
pip install protobuf==3.20.3
pip install numpy

1.2.3 转换fp16模型

bash common/pth2om.sh --version 6.1 --type fp16 --model yolov5_pcb_608_out3 --img_size 608 --class_num 3 --bs 1 --soc Ascend310B1

其中pth2om.sh脚本内容如下,在ascend_yolov5_pt2om文件夹里面有

## 帮助信息
### === Model Options ===
###  --version      yolov5 tags [2.0/3.1/4.0/5.0/6.0/6.1], default: 6.1
###  --model        yolov5[n/s/m/l/x], default: yolov5s
###  --bs           batch size, default: 4
### === Build Options ===
###  --type         data type [fp16/int8], default: fp16
###  --calib_bs     batch size of calibration data (int8 use only), default: 16
### === Inference Options ===
###  --mode         infer/val, default: infer
###  --conf         confidence threshold, default: 0.4
###  --iou          NMS IOU threshold, default: 0.5
###  --output_dir   output dir, default: output
### === Environment Options ===
###  --soc          soc version [Ascend310/Ascend310P?], default: Ascend310
### === Help Options ===
###  -h             print this messagehelp() {sed -rn 's/^### ?//;T;p;' "$0"
}## 参数设置
GETOPT_ARGS=`getopt -o 'h' -al version:,model:,img_size:,channel_num:,bs:,class_num:,type:,calib_bs:,mode:,conf:,iou:,output_dir:,soc: -- "$@"`
eval set -- "$GETOPT_ARGS"
while [ -n "$1" ]
docase "$1" in-h) help; exit 0 ;; --version) version=$2; shift 2;;--model) model=$2; shift 2;;--img_size) img_size=$2; shift 2;;--channel_num) channel_num=$2; shift 2;;--bs) bs=$2; shift 2;;--class_num) class_num=$2; shift 2;;--type) type=$2; shift 2;;--calib_bs) calib_bs=$2; shift 2;;--mode) mode=$2; shift 2;;--conf) conf=$2; shift 2;;--iou) iou=$2; shift 2;;--output_dir) output_dir=$2; shift 2;;--soc) soc=$2; shift 2;;--) break ;;esac
doneif [[ -z $version ]]; then version=6.1; fi
if [[ -z $model ]]; then model=yolov5s; fi
if [[ -z $img_size ]]; then img_size=608; fi
if [[ -z $channel_num ]]; then channel_num=3; fi
if [[ -z $bs ]]; then bs=4; fi
if [[ -z $class_num ]]; then class_num=3; fi
if [[ -z $type ]]; then type=fp16; fi
if [[ -z $calib_bs ]]; then calib_bs=16; fi
if [[ -z $mode ]]; then mode=infer; fi
if [[ -z $conf ]]; then conf=0.4; fi
if [[ -z $iou ]]; then iou=0.5; fi
if [[ -z $output_dir ]]; then output_dir=output; fi
if [[ -z $soc ]]; then echo "error: missing 1 required argument: 'soc'"; exit 1 ; fiif [[ ${type} == fp16 ]] ; thenargs_info="=== pth2om args === \n version: $version \n model: $model \n bs: $bs \n type: $type \n mode: $mode \n conf: $conf \n iou: $iou \n output_dir: $output_dir \n soc: $soc"echo -e $args_info
elseargs_info="=== pth2om args === \nversion: $version \n model: $model \n bs: $bs \n type: $type \n calib_bs: $calib_bs \n mode: $mode \n conf: $conf \n iou: $iou \n output_dir: $output_dir \n soc: $soc"echo -e $args_info
fiif [ ! -d ${output_dir} ]; thenmkdir ${output_dir}
fi## pt导出om模型
echo "Starting 修改pytorch源码"
git checkout . && git checkout v${version}
git apply v${version}/v${version}.patchecho "Starting 导出onnx模型并简化"
if [[ ${version} == 6* ]] ; thenpython3 export.py --weights=${model}.pt --imgsz=${img_size} --batch-size=${bs} --opset=11 --dynamic || exit 1
elsepython3 models/export.py --weights=${model}.pt --img-size=${img_size} --batch-size=${bs} --opset=11 --dynamic || exit 1
fi
python3 -m onnxsim ${model}.onnx ${model}.onnx --dynamic-input-shape --input-shape images:${bs},${channel_num},${img_size},${img_size} || exit 1
model_tmp=${model}if [ ${type} == int8 ] ; thenecho "Starting 生成量化数据"python3 common/quantize/generate_data.py --img_info_file=common/quantize/img_info_amct.txt --save_path=amct_data --batch_size=${calib_bs} --img_size=${img_size} || exit 1if [[ ${version} == 6.1 && ${model} == yolov5[nl] ]] ; thenecho "Starting pre_amct"python3 common/quantize/calibration_scale.py --input=${model}.onnx --output=${model}_cali.onnx --mode=pre_amct || exit 1echo "Starting onnx模型量化"bash common/quantize/amct.sh ${model}_cali.onnx || exit 1if [[ -f ${output_dir}/result_deploy_model.onnx ]];thenmv ${output_dir}/result_deploy_model.onnx ${model}_amct.onnxfirm -rf ${model}_cali.onnxecho "Starting after_amct"python3 common/quantize/calibration_scale.py --input=${model}_amct.onnx --output=${model}_amct.onnx --mode=after_amct || exit 1elseecho "Starting onnx模型量化"bash common/quantize/amct.sh ${model}.onnx || exit 1if [[ -f ${output_dir}/result_deploy_model.onnx ]];thenmv ${output_dir}/result_deploy_model.onnx ${model}_amct.onnxfifimodel_tmp=${model}_amctif [[ -f ${output_dir}/result_* ]];thenrm -rf  ${output_dir}/result_result_fake_quant_model.onnxrm -rf  ${output_dir}/result_quant.jsonfi
fiecho "Starting 修改onnx模型,添加NMS后处理算子"
python3 common/util/modify_model.py --pt=${model}.pt --onnx=${model_tmp}.onnx --img-size=${img_size} --class-num=${class_num} --conf-thres=${conf} --iou-thres=${iou} || exit 1echo "Starting onnx导出om模型(有后处理)"
bash common/util/atc.sh infer ${model_tmp}_nms.onnx ${output_dir}/${model_tmp}_nms ${img_size} ${channel_num} ${bs} ${soc} || exit 1
rm -rf ${model_tmp}_nms.onnxif [[ ${mode} == val ]] ; thenecho "Starting onnx导出om模型(无后处理)"bash common/util/atc.sh val ${model_tmp}.onnx ${output_dir}/${model_tmp} ${bs} ${soc} || exit 1rm -rf ${model_tmp}.onnx
fiecho -e "pth导出om模型 Success \n"

然后atc.sh脚本内容如下,在ascend_yolov5_pt2om文件夹里面也有

mode=$1
onnx=$2
om=$3
img_size=$4
channel_num=$5
bs=$6
soc=$7if [ ${mode} == val ];theninput_shape="images:${bs},${channel_num},${img_size},${img_size}"input_fp16_nodes="images"
elif [ ${mode} == infer ];theninput_shape="images:${bs},${channel_num},${img_size},${img_size};img_info:${bs},4"input_fp16_nodes="images;img_info"
fiif [[ ${soc} == Ascend310 ]];thenatc --model=${onnx} \--framework=5 \--output=${om}_bs${bs} \--input_format=NCHW \--input_shape=${input_shape} \--log=error \--soc_version=${soc} \--input_fp16_nodes=${input_fp16_nodes} \--output_type=FP16
fiif [[ ${soc} == Ascend310B1 ]];thenatc --model=${onnx} \--framework=5 \--output=${om}_bs${bs} \--input_format=NCHW \--input_shape=${input_shape} \--log=error \--soc_version=${soc} \--optypelist_for_implmode="Sigmoid" \--op_select_implmode=high_performance \--fusion_switch_file=common/util/fusion.cfg \--insert_op_conf=aipp_yolov5.cfg#--input_fp16_nodes=${input_fp16_nodes} #--output_type=FP16 
fiif [[ ${soc} == Ascend310P? ]];thenatc --model=${onnx} \--framework=5 \--output=${om}_bs${bs} \--input_format=NCHW \--input_shape=${input_shape} \--log=error \--soc_version=${soc} \--optypelist_for_implmode="Sigmoid" \--op_select_implmode=high_performance \--fusion_switch_file=common/util/fusion.cfg \--insert_op_conf=aipp_yolov5.cfg#--input_fp16_nodes=${input_fp16_nodes} #--output_type=FP16 
fiif [[ ${soc} == Ascend710 ]];thenatc --model=${onnx} \--framework=5 \--output=${om}_bs${bs} \--input_format=NCHW \--input_shape=${input_shape} \--log=error \--soc_version=${soc} \--optypelist_for_implmode="Sigmoid" \--op_select_implmode=high_performance \--fusion_switch_file=common/util/fusion.cfg #--insert_op_conf=aipp_yolov5.cfg
#       --insert_op_conf=aipp.cfg
#       --insert_op_conf=aipp_yolov5.cfg
fiif [[ ${soc} == Ascend910 ]];thenatc --model=${onnx} \--framework=5 \--output=${om}_bs${bs} \--input_format=NCHW \--input_shape=${input_shape} \--log=error \--soc_version=${soc} \--optypelist_for_implmode="Sigmoid" \--op_select_implmode=high_performance \--fusion_switch_file=common/util/fusion.cfg #--insert_op_conf=aipp_yolov5.cfg
#       --insert_op_conf=aipp.cfg
#       --insert_op_conf=aipp_yolov5.cfg
fi

2 模型转换(使用atc,不集成nms算子)

      上述模型转换都是基于.pt文件转换为.om模型文件。另外,还可以直接应用atc工具将onnx模型转为.om模型。

bash common/util/atc.sh infer yolov5_pcb_608_out3_nms.onnx output/yolov5_pcb_608_out3_nms 1 Ascend310B1

或者直接使用atc工具转换

      (1)人车非模型
        atc --model=yolov5_pcb_608_out3_nms.onnx \
            --framework=5 \
            --output=yolov5_pcb_608_out3_bs4 \
            --input_format=NCHW \
            --input_shape="images:1,3,640,640;img_info:1,4" \
            --log=error \
            --soc_version=Ascend710 \
            --optypelist_for_implmode="Sigmoid" \
            --op_select_implmode=high_performance 
        
      (2)行人结构化模型
        atc --model=pedes_structure.onnx \
            --framework=5 \
            --output=pedes_structure \
            --input_format=NCHW \
            --input_shape="x:-1,3,224,224" \
            --dynamic_batch_size="1,2,4,8" \
            --log=error \
            --soc_version=Ascend710 \
            --optypelist_for_implmode="Sigmoid" \
            --op_select_implmode=high_performance 

参考文献:

海思Hi3519 DV500 部署yolov5并加速优化_dv500移植yolov5-CSDN博客

samples: CANN Samples - Gitee.com

这篇关于华为昇腾310B1平台深度学习算法模型转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976294

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G