华为昇腾310B1平台深度学习算法模型转换

2024-05-10 11:20

本文主要是介绍华为昇腾310B1平台深度学习算法模型转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 模型转换(集成nms算子到模型中)

1.1 基础模型说明

1.2 模型转换

1.2.1 设置环境变量

1.2.2 安装yolov5依赖(gcc需要>7.5)

1.2.3 转换fp16模型

2 模型转换(使用atc,不集成nms算子)

参考文献:


1 模型转换(集成nms算子到模型中)

1.1 基础模型说明

对于Yolov5模型,华为提供了单独的脚本执行转换,目的通过自定义的Yolov5后处理算子将NMS操作集成到离线模型中,提高推理性能。Yolov5模型转换脚本位于计算库的ascend_yolov5_pt2om,模型转换时使用官方原始yolov5s-v6.1为基础训练的人车非.pt模型,该模型有3个输出。转换工具会自动将3个输出合并为一个输出,并转为onnx模型,之后再转为om模型。默认精度为FP16。

对于INT8,当前转换工具量化后准确率有下降,对于实时性强的场景不适合,暂不使用。

ascend_yolov5_pt2om已上传到csdn资源(你自己的百度网盘里面也有一份)https://download.csdn.net/download/u013171226/89286331?spm=1001.2014.3001.5501

1.2 模型转换

模型转换主要是将.pt模型转为Ascentd可推理的.om模型,包括三种数据类型(fp16、fp32和int8),模型转换过程下。模型转换使用ascend_yolov5_pt2om工程实现。

1.2.1 设置环境变量

source /usr/local/Ascend/ascend-toolkit/set_env.sh 

1.2.2 安装yolov5依赖(gcc需要>7.5)

pip install -r requirements.txtpip install onnx
pip install onnxruntime==1.6.0
pip install onnxsimpip install opc-tool==0.1.0
pip install decorator 
pip install protobuf==3.20.3
pip install numpy

1.2.3 转换fp16模型

bash common/pth2om.sh --version 6.1 --type fp16 --model yolov5_pcb_608_out3 --img_size 608 --class_num 3 --bs 1 --soc Ascend310B1

其中pth2om.sh脚本内容如下,在ascend_yolov5_pt2om文件夹里面有

## 帮助信息
### === Model Options ===
###  --version      yolov5 tags [2.0/3.1/4.0/5.0/6.0/6.1], default: 6.1
###  --model        yolov5[n/s/m/l/x], default: yolov5s
###  --bs           batch size, default: 4
### === Build Options ===
###  --type         data type [fp16/int8], default: fp16
###  --calib_bs     batch size of calibration data (int8 use only), default: 16
### === Inference Options ===
###  --mode         infer/val, default: infer
###  --conf         confidence threshold, default: 0.4
###  --iou          NMS IOU threshold, default: 0.5
###  --output_dir   output dir, default: output
### === Environment Options ===
###  --soc          soc version [Ascend310/Ascend310P?], default: Ascend310
### === Help Options ===
###  -h             print this messagehelp() {sed -rn 's/^### ?//;T;p;' "$0"
}## 参数设置
GETOPT_ARGS=`getopt -o 'h' -al version:,model:,img_size:,channel_num:,bs:,class_num:,type:,calib_bs:,mode:,conf:,iou:,output_dir:,soc: -- "$@"`
eval set -- "$GETOPT_ARGS"
while [ -n "$1" ]
docase "$1" in-h) help; exit 0 ;; --version) version=$2; shift 2;;--model) model=$2; shift 2;;--img_size) img_size=$2; shift 2;;--channel_num) channel_num=$2; shift 2;;--bs) bs=$2; shift 2;;--class_num) class_num=$2; shift 2;;--type) type=$2; shift 2;;--calib_bs) calib_bs=$2; shift 2;;--mode) mode=$2; shift 2;;--conf) conf=$2; shift 2;;--iou) iou=$2; shift 2;;--output_dir) output_dir=$2; shift 2;;--soc) soc=$2; shift 2;;--) break ;;esac
doneif [[ -z $version ]]; then version=6.1; fi
if [[ -z $model ]]; then model=yolov5s; fi
if [[ -z $img_size ]]; then img_size=608; fi
if [[ -z $channel_num ]]; then channel_num=3; fi
if [[ -z $bs ]]; then bs=4; fi
if [[ -z $class_num ]]; then class_num=3; fi
if [[ -z $type ]]; then type=fp16; fi
if [[ -z $calib_bs ]]; then calib_bs=16; fi
if [[ -z $mode ]]; then mode=infer; fi
if [[ -z $conf ]]; then conf=0.4; fi
if [[ -z $iou ]]; then iou=0.5; fi
if [[ -z $output_dir ]]; then output_dir=output; fi
if [[ -z $soc ]]; then echo "error: missing 1 required argument: 'soc'"; exit 1 ; fiif [[ ${type} == fp16 ]] ; thenargs_info="=== pth2om args === \n version: $version \n model: $model \n bs: $bs \n type: $type \n mode: $mode \n conf: $conf \n iou: $iou \n output_dir: $output_dir \n soc: $soc"echo -e $args_info
elseargs_info="=== pth2om args === \nversion: $version \n model: $model \n bs: $bs \n type: $type \n calib_bs: $calib_bs \n mode: $mode \n conf: $conf \n iou: $iou \n output_dir: $output_dir \n soc: $soc"echo -e $args_info
fiif [ ! -d ${output_dir} ]; thenmkdir ${output_dir}
fi## pt导出om模型
echo "Starting 修改pytorch源码"
git checkout . && git checkout v${version}
git apply v${version}/v${version}.patchecho "Starting 导出onnx模型并简化"
if [[ ${version} == 6* ]] ; thenpython3 export.py --weights=${model}.pt --imgsz=${img_size} --batch-size=${bs} --opset=11 --dynamic || exit 1
elsepython3 models/export.py --weights=${model}.pt --img-size=${img_size} --batch-size=${bs} --opset=11 --dynamic || exit 1
fi
python3 -m onnxsim ${model}.onnx ${model}.onnx --dynamic-input-shape --input-shape images:${bs},${channel_num},${img_size},${img_size} || exit 1
model_tmp=${model}if [ ${type} == int8 ] ; thenecho "Starting 生成量化数据"python3 common/quantize/generate_data.py --img_info_file=common/quantize/img_info_amct.txt --save_path=amct_data --batch_size=${calib_bs} --img_size=${img_size} || exit 1if [[ ${version} == 6.1 && ${model} == yolov5[nl] ]] ; thenecho "Starting pre_amct"python3 common/quantize/calibration_scale.py --input=${model}.onnx --output=${model}_cali.onnx --mode=pre_amct || exit 1echo "Starting onnx模型量化"bash common/quantize/amct.sh ${model}_cali.onnx || exit 1if [[ -f ${output_dir}/result_deploy_model.onnx ]];thenmv ${output_dir}/result_deploy_model.onnx ${model}_amct.onnxfirm -rf ${model}_cali.onnxecho "Starting after_amct"python3 common/quantize/calibration_scale.py --input=${model}_amct.onnx --output=${model}_amct.onnx --mode=after_amct || exit 1elseecho "Starting onnx模型量化"bash common/quantize/amct.sh ${model}.onnx || exit 1if [[ -f ${output_dir}/result_deploy_model.onnx ]];thenmv ${output_dir}/result_deploy_model.onnx ${model}_amct.onnxfifimodel_tmp=${model}_amctif [[ -f ${output_dir}/result_* ]];thenrm -rf  ${output_dir}/result_result_fake_quant_model.onnxrm -rf  ${output_dir}/result_quant.jsonfi
fiecho "Starting 修改onnx模型,添加NMS后处理算子"
python3 common/util/modify_model.py --pt=${model}.pt --onnx=${model_tmp}.onnx --img-size=${img_size} --class-num=${class_num} --conf-thres=${conf} --iou-thres=${iou} || exit 1echo "Starting onnx导出om模型(有后处理)"
bash common/util/atc.sh infer ${model_tmp}_nms.onnx ${output_dir}/${model_tmp}_nms ${img_size} ${channel_num} ${bs} ${soc} || exit 1
rm -rf ${model_tmp}_nms.onnxif [[ ${mode} == val ]] ; thenecho "Starting onnx导出om模型(无后处理)"bash common/util/atc.sh val ${model_tmp}.onnx ${output_dir}/${model_tmp} ${bs} ${soc} || exit 1rm -rf ${model_tmp}.onnx
fiecho -e "pth导出om模型 Success \n"

然后atc.sh脚本内容如下,在ascend_yolov5_pt2om文件夹里面也有

mode=$1
onnx=$2
om=$3
img_size=$4
channel_num=$5
bs=$6
soc=$7if [ ${mode} == val ];theninput_shape="images:${bs},${channel_num},${img_size},${img_size}"input_fp16_nodes="images"
elif [ ${mode} == infer ];theninput_shape="images:${bs},${channel_num},${img_size},${img_size};img_info:${bs},4"input_fp16_nodes="images;img_info"
fiif [[ ${soc} == Ascend310 ]];thenatc --model=${onnx} \--framework=5 \--output=${om}_bs${bs} \--input_format=NCHW \--input_shape=${input_shape} \--log=error \--soc_version=${soc} \--input_fp16_nodes=${input_fp16_nodes} \--output_type=FP16
fiif [[ ${soc} == Ascend310B1 ]];thenatc --model=${onnx} \--framework=5 \--output=${om}_bs${bs} \--input_format=NCHW \--input_shape=${input_shape} \--log=error \--soc_version=${soc} \--optypelist_for_implmode="Sigmoid" \--op_select_implmode=high_performance \--fusion_switch_file=common/util/fusion.cfg \--insert_op_conf=aipp_yolov5.cfg#--input_fp16_nodes=${input_fp16_nodes} #--output_type=FP16 
fiif [[ ${soc} == Ascend310P? ]];thenatc --model=${onnx} \--framework=5 \--output=${om}_bs${bs} \--input_format=NCHW \--input_shape=${input_shape} \--log=error \--soc_version=${soc} \--optypelist_for_implmode="Sigmoid" \--op_select_implmode=high_performance \--fusion_switch_file=common/util/fusion.cfg \--insert_op_conf=aipp_yolov5.cfg#--input_fp16_nodes=${input_fp16_nodes} #--output_type=FP16 
fiif [[ ${soc} == Ascend710 ]];thenatc --model=${onnx} \--framework=5 \--output=${om}_bs${bs} \--input_format=NCHW \--input_shape=${input_shape} \--log=error \--soc_version=${soc} \--optypelist_for_implmode="Sigmoid" \--op_select_implmode=high_performance \--fusion_switch_file=common/util/fusion.cfg #--insert_op_conf=aipp_yolov5.cfg
#       --insert_op_conf=aipp.cfg
#       --insert_op_conf=aipp_yolov5.cfg
fiif [[ ${soc} == Ascend910 ]];thenatc --model=${onnx} \--framework=5 \--output=${om}_bs${bs} \--input_format=NCHW \--input_shape=${input_shape} \--log=error \--soc_version=${soc} \--optypelist_for_implmode="Sigmoid" \--op_select_implmode=high_performance \--fusion_switch_file=common/util/fusion.cfg #--insert_op_conf=aipp_yolov5.cfg
#       --insert_op_conf=aipp.cfg
#       --insert_op_conf=aipp_yolov5.cfg
fi

2 模型转换(使用atc,不集成nms算子)

      上述模型转换都是基于.pt文件转换为.om模型文件。另外,还可以直接应用atc工具将onnx模型转为.om模型。

bash common/util/atc.sh infer yolov5_pcb_608_out3_nms.onnx output/yolov5_pcb_608_out3_nms 1 Ascend310B1

或者直接使用atc工具转换

      (1)人车非模型
        atc --model=yolov5_pcb_608_out3_nms.onnx \
            --framework=5 \
            --output=yolov5_pcb_608_out3_bs4 \
            --input_format=NCHW \
            --input_shape="images:1,3,640,640;img_info:1,4" \
            --log=error \
            --soc_version=Ascend710 \
            --optypelist_for_implmode="Sigmoid" \
            --op_select_implmode=high_performance 
        
      (2)行人结构化模型
        atc --model=pedes_structure.onnx \
            --framework=5 \
            --output=pedes_structure \
            --input_format=NCHW \
            --input_shape="x:-1,3,224,224" \
            --dynamic_batch_size="1,2,4,8" \
            --log=error \
            --soc_version=Ascend710 \
            --optypelist_for_implmode="Sigmoid" \
            --op_select_implmode=high_performance 

参考文献:

海思Hi3519 DV500 部署yolov5并加速优化_dv500移植yolov5-CSDN博客

samples: CANN Samples - Gitee.com

这篇关于华为昇腾310B1平台深度学习算法模型转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976294

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

你的华为手机升级了吗? 鸿蒙NEXT多连推5.0.123版本变化颇多

《你的华为手机升级了吗?鸿蒙NEXT多连推5.0.123版本变化颇多》现在的手机系统更新可不仅仅是修修补补那么简单了,华为手机的鸿蒙系统最近可是动作频频,给用户们带来了不少惊喜... 为了让用户的使用体验变得很好,华为手机不仅发布了一系列给力的新机,还在操作系统方面进行了疯狂的发力。尤其是近期,不仅鸿蒙O

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt