文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及全生命周期成本的公交光伏充电站储能优化配置方法》

本文主要是介绍文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及全生命周期成本的公交光伏充电站储能优化配置方法》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇论文的核心内容是关于公交光伏充电站储能优化配置方法的研究。以下是关键点的总结:

  1. 研究背景:在“双碳”目标下,城市公交车电动化进程加快,导致公交充电站面临较大的并网点负载压力和较高的运营成本。

  2. 研究目的:提出一种公交光伏充电站储能优化配置方法,以减轻配电网的并网压力,并提升公交充电站的运营经济性。

  3. 研究方法

    • 分析公交充电负荷特性,构建公交光伏充电站典型运行场景。
    • 构建考虑全生命周期成本的双层优化模型,上层规划储能容量和功率,下层优化日运行状态。
    • 采用北京某在营公交充电站作为算例,验证所提配置方法的有效性。
  4. 模型构建

    • 考虑充电站运营商利益、公共交通通勤需求、并网点容量限制。
    • 建立电池储能系统全寿命周期成本模型,包括初始投资成本、运营成本。
  5. 关键影响因素

    • 光伏发电余量上网。
    • 公交车充电策略。
    • 电网电价。
    • 电池购置价格。
  6. 结果分析

    • 配置储能可以显著降低充电站的运营成本和总成本。
    • 储能有序充电和光伏发电余量上网可以减小配置的储能容量,增加售电收益。
  7. 经济效益

    • 通过计算投资回报率和投资回收年限,表明优化配置储能可以提升充电站的运营经济效益。
  8. 结论与建议

    • 合理配置储能有助于推动城市公交电气化,实现“双碳”目标。
    • 建议充电站运营商充分利用环境条件配置光伏发电系统,与电网公司合作,开展储能有序充电。

复现仿真的大致思路可以分为以下几个步骤:

  1. 数据收集与预处理:收集公交充电站的历史充电负荷数据和光伏出力数据,进行季节性和周运行特性分析。

  2. 典型运行场景构建:使用聚类算法(如K-means)对充电负荷和光伏出力数据进行聚类,提取典型运行场景及其概率。

  3. 储能系统建模:建立电池储能系统的运行特性模型,包括电量变化、电池健康状态衰减、SoC连续性等。

  4. 全生命周期成本建模:计算储能系统的初始投资成本、运营成本和再退役成本。

  5. 双层优化模型构建:上层规划储能容量和功率,下层优化日运行状态。

  6. 模型求解:将双层模型转换为单层模型,使用适当的优化算法(如线性规划)求解。

  7. 结果分析:分析储能配置对充电站运营成本、峰谷电价差和电池价格的影响。

以下是使用Python语言表示的程序框架:

import numpy as np
from scipy.optimize import linprog
from sklearn.cluster import KMeans
import pandas as pd# 假设已经有了公交充电站的充电负荷数据和光伏出力数据
charging_load_data = pd.DataFrame(...)  # 这里填入实际的充电负荷数据
pv_output_data = pd.DataFrame(...)      # 这里填入实际的光伏出力数据# 数据预处理(例如,缺失值处理,异常值处理等)
# ...# 典型运行场景构建
def create_scenarios(data, n_clusters):kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(data)scenarios = kmeans.cluster_centers_return scenarioscharging_scenarios = create_scenarios(charging_load_data, n_clusters=3)
pv_scenarios = create_scenarios(pv_output_data, n_clusters=3)# 储能系统建模
def battery_model(battery_capacity, charge_rate, discharge_rate, lifecycle):# 这里应包含电池模型的具体实现pass# 全生命周期成本建模
def lifecycle_cost(initial_investment, operation_cost, maintenance_cost, replacement_cost):# 这里应包含全生命周期成本计算的具体实现pass# 双层优化模型构建
def upper_layer_optimization(scenarios, constraints):# 这里应包含上层规划优化的具体实现passdef lower_layer_optimization(scenarios, constraints):# 这里应包含下层运行优化的具体实现pass# 模型求解
def solve_optimization_model(objective_function, constraints):# 使用线性规划求解器求解return linprog(c=objective_function, A_eq=constraints['A_eq'], b_eq=constraints['b_eq'])# 结果分析
def analyze_results(optimization_results):# 这里应包含结果分析的具体实现pass# 主程序
def main_simulation():# 创建典型运行场景scenarios = create_scenarios(...)  # 填入适当的数据和聚类数# 定义优化模型的约束条件constraints = {'A_eq': ...,  # 线性约束矩阵'b_eq': ...,  # 线性约束向量}# 运行上层规划优化upper_optimization_result = upper_layer_optimization(scenarios, constraints)# 运行下层运行优化lower_optimization_result = lower_layer_optimization(scenarios, constraints)# 综合上下层结果进行求解optimization_results = solve_optimization_model(objective_function, constraints)# 分析优化结果analyze_results(optimization_results)if __name__ == "__main__":main_simulation()

请注意,上述代码仅为概念性框架,实际编程实现时需要根据具体的数据格式、模型参数和算法逻辑进行详细编写。此外,还需要进行单元测试和验证以确保模型的准确性和可靠性。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及全生命周期成本的公交光伏充电站储能优化配置方法》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976088

相关文章

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Jenkins分布式集群配置方式

《Jenkins分布式集群配置方式》:本文主要介绍Jenkins分布式集群配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装jenkins2.配置集群总结Jenkins是一个开源项目,它提供了一个容易使用的持续集成系统,并且提供了大量的plugin满