用 C 语言进行大模型推理:探索 llama2.c 仓库(二)

2024-05-10 09:36

本文主要是介绍用 C 语言进行大模型推理:探索 llama2.c 仓库(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前提
  • 如何构建一个Transformer Model
    • 模型定义
    • 模型初始化
  • 如何构建tokenzier 和 sampler
  • 如何进行推理
  • 总结

前提

上一节我们介绍了llama2.c中如何对hugging face的权重进行处理,拿到了llama2.c想要的权重格式和tokenizer.bin格式。这一节我们分析下在llama2.c如何解析这两个.bin文件。这一节的所有代码都在run.c文件里。

用 C 语言进行大模型推理:探索 llama2.c 仓库(一)

如何构建一个Transformer Model

按照一个最简单地理解,我们可以使用C语言构建一个Transformer Model,然后将两个.bin文件按照格式填进去即可。那这个Transformer Model 应该是一个什么数据结构呢,或者是一个什么样的组织架构呢?在C语言中没有class这个概念的,最多我们常见的也就是结构体了,而且结构体里只能定义变量,不能定义函数。所以那些操作Transformer Model中的那些算子又该如何实现呢?带着这些问题,或者你还有其他的问题,我们一步一步来看下llama2.c中是如何实现的。

模型定义

typedef struct {int dim;        // transformer dimensionint hidden_dim; // for ffn layersint n_layers;   // number of layersint n_heads;    // number of query headsint n_kv_heads; // number of key/value heads (can be < query heads because of// multiquery)int vocab_size; // vocabulary size, usually 256 (byte-level)int seq_len;    // max sequence length
} Config;typedef struct {// token embedding tablefloat *token_embedding_table; // (vocab_size, dim)// weights for rmsnormsfloat *rms_att_weight; // (layer, dim) rmsnorm weightsfloat *rms_ffn_weight; // (layer, dim)// weights for matmuls. note dim == n_heads * head_sizefloat *wq; // (layer, dim, n_heads * head_size)float *wk; // (layer, dim, n_kv_heads * head_size)float *wv; // (layer, dim, n_kv_heads * head_size)float *wo; // (layer, n_heads * head_size, dim)// weights for ffnfloat *w1; // (layer, hidden_dim, dim)float *w2; // (layer, dim, hidden_dim)float *w3; // (layer, hidden_dim, dim)// final rmsnormfloat *rms_final_weight; // (dim,)// (optional) classifier weights for the logits, on the last layerfloat *wcls;
} TransformerWeights;typedef struct {// current wave of activationsfloat *x;      // activation at current time stamp (dim,)float *xb;     // same, but inside a residual branch (dim,)float *xb2;    // an additional buffer just for convenience (dim,)float *hb;     // buffer for hidden dimension in the ffn (hidden_dim,)float *hb2;    // buffer for hidden dimension in the ffn (hidden_dim,)float *q;      // query (dim,)float *k;      // key (dim,)float *v;      // value (dim,)float *att;    // buffer for scores/attention values (n_heads, seq_len)float *logits; // output logits// kv cachefloat *key_cache;   // (layer, seq_len, dim)float *value_cache; // (layer, seq_len, dim)
} RunState;typedef struct {Config config; // the hyperparameters of the architecture (the blueprint)TransformerWeights weights; // the weights of the modelRunState state; // buffers for the "wave" of activations in the forward pass// some more state needed to properly clean up the memory mapping (sigh)int fd;            // file descriptor for memory mappingfloat *data;       // memory mapped data pointerssize_t file_size; // size of the checkpoint file in bytes
} Transformer;

llama2.c中的Transformer是一个结构体,其中最重要的三个成员变量configweightsstate,分别保存了网络的超参数,权重,以及网络运行过程中的中间结果。
强烈建议这里你仔细理解理解,体会一下这个写法。

模型初始化

我们要对定义的模型进行初始化,主要是两个方面:权重初始化和中间变量初始化。这里llama2.c的写法就更厉害了。请仔细欣赏下面的两个函数:

权重初始化函数:

void memory_map_weights(TransformerWeights *w, Config *p, float *ptr,int shared_weights) {int head_size = p->dim / p->n_heads;// make sure the multiplications below are done in 64bit to fit the parameter// counts of 13B+ modelsunsigned long long n_layers = p->n_layers;w->token_embedding_table = ptr;ptr += p->vocab_size * p->dim;w->rms_att_weight = ptr;ptr += n_layers * p->dim;w->wq = ptr;ptr += n_layers * p->dim * (p->n_heads * head_size);w->wk = ptr;ptr += n_layers * p->dim * (p->n_kv_heads * head_size);w->wv = ptr;ptr += n_layers * p->dim * (p->n_kv_heads * head_size);w->wo = ptr;ptr += n_layers * (p->n_heads * head_size) * p->dim;w->rms_ffn_weight = ptr;ptr += n_layers * p->dim;w->w1 = ptr;ptr += n_layers * p->dim * p->hidden_dim;w->w2 = ptr;ptr += n_layers * p->hidden_dim * p->dim;w->w3 = ptr;ptr += n_layers * p->dim * p->hidden_dim;w->rms_final_weight = ptr;ptr += p->dim;ptr += p->seq_len * head_size /2; // skip what used to be freq_cis_real (for RoPE)ptr += p->seq_len * head_size /2; // skip what used to be freq_cis_imag (for RoPE)w->wcls = shared_weights ? w->token_embedding_table : ptr;
}

自我感觉这个仓库很经典得一段代码就是这里了,我没有加载权重吧,我只是拿到了它的地址,然后映射给我结构体中的变量。然后等我真正推理计算的时候,用到哪一段权重就将哪一段权重加载到内存中参与计算。

中间变量初始化:

void malloc_run_state(RunState *s, Config *p) {// we calloc instead of malloc to keep valgrind happyint kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;s->x = calloc(p->dim, sizeof(float));s->xb = calloc(p->dim, sizeof(float));s->xb2 = calloc(p->dim, sizeof(float));s->hb = calloc(p->hidden_dim, sizeof(float));s->hb2 = calloc(p->hidden_dim, sizeof(float));s->q = calloc(p->dim, sizeof(float));s->key_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));s->value_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));s->att = calloc(p->n_heads * p->seq_len, sizeof(float));s->logits = calloc(p->vocab_size, sizeof(float));// ensure all mallocs went fineif (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q ||!s->key_cache || !s->value_cache || !s->att || !s->logits) {fprintf(stderr, "malloc failed!\n");exit(EXIT_FAILURE);}
}

如果不太理解权重初始化和中间变量初始化时为什么要申请那么大的空间,可以自己手动地将网络地数据流从头到尾推一遍。

如何构建tokenzier 和 sampler

对于这两个模块地构建我们不多介绍,感兴趣地可以自己去看看源码。

如何进行推理

这部分是我最感兴趣的地方。

  // forward all the layersfor (unsigned long long l = 0; l < p->n_layers; l++) {// attention rmsnormrmsnorm(s->xb, x, w->rms_att_weight + l * dim, dim);// key and value point to the kv cacheint loff = l * p->seq_len * kv_dim; // kv cache layer offset for conveniences->k = s->key_cache + loff + pos * kv_dim;s->v = s->value_cache + loff + pos * kv_dim;// qkv matmuls for this positionmatmul(s->q, s->xb, w->wq + l * dim * dim, dim, dim);matmul(s->k, s->xb, w->wk + l * dim * kv_dim, dim, kv_dim);matmul(s->v, s->xb, w->wv + l * dim * kv_dim, dim, kv_dim);// RoPE relative positional encoding: complex-valued rotate q and k in each// headfor (int i = 0; i < dim; i += 2) {int head_dim = i % head_size;float freq = 1.0f / powf(10000.0f, head_dim / (float)head_size);float val = pos * freq;float fcr = cosf(val);float fci = sinf(val);int rotn = i < kv_dim ? 2 : 1; // how many vectors? 2 = q & k, 1 = q onlyfor (int v = 0; v < rotn; v++) {float *vec =v == 0 ? s->q : s->k; // the vector to rotate (query or key)float v0 = vec[i];float v1 = vec[i + 1];vec[i] = v0 * fcr - v1 * fci;vec[i + 1] = v0 * fci + v1 * fcr;}}// multihead attention. iterate over all headsint h;
#pragma omp parallel for private(h)for (h = 0; h < p->n_heads; h++) {// get the query vector for this headfloat *q = s->q + h * head_size;// attention scores for this headfloat *att = s->att + h * p->seq_len;// iterate over all timesteps, including the current onefor (int t = 0; t <= pos; t++) {// get the key vector for this head and at this timestepfloat *k = s->key_cache + loff + t * kv_dim + (h / kv_mul) * head_size;// calculate the attention score as the dot product of q and kfloat score = 0.0f;for (int i = 0; i < head_size; i++) {score += q[i] * k[i];}score /= sqrtf(head_size);// save the score to the attention bufferatt[t] = score;}// softmax the scores to get attention weights, from 0..pos inclusivelysoftmax(att, pos + 1);// weighted sum of the values, store back into xbfloat *xb = s->xb + h * head_size;memset(xb, 0, head_size * sizeof(float));for (int t = 0; t <= pos; t++) {// get the value vector for this head and at this timestepfloat *v =s->value_cache + loff + t * kv_dim + (h / kv_mul) * head_size;// get the attention weight for this timestepfloat a = att[t];// accumulate the weighted value into xbfor (int i = 0; i < head_size; i++) {xb[i] += a * v[i];}}}// final matmul to get the output of the attentionmatmul(s->xb2, s->xb, w->wo + l * dim * dim, dim, dim);// residual connection back into xfor (int i = 0; i < dim; i++) {x[i] += s->xb2[i];}// ffn rmsnormrmsnorm(s->xb, x, w->rms_ffn_weight + l * dim, dim);// Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x))// first calculate self.w1(x) and self.w3(x)matmul(s->hb, s->xb, w->w1 + l * dim * hidden_dim, dim, hidden_dim);matmul(s->hb2, s->xb, w->w3 + l * dim * hidden_dim, dim, hidden_dim);// SwiGLU non-linearityfor (int i = 0; i < hidden_dim; i++) {float val = s->hb[i];// silu(x)=x*σ(x), where σ(x) is the logistic sigmoidval *= (1.0f / (1.0f + expf(-val)));// elementwise multiply with w3(x)val *= s->hb2[i];s->hb[i] = val;}// final matmul to get the output of the ffnmatmul(s->xb, s->hb, w->w2 + l * dim * hidden_dim, hidden_dim, dim);// residual connectionfor (int i = 0; i < dim; i++) {x[i] += s->xb[i];}}

for循环所有的layers进行推理,有三个主要的子函数,分别是:rmsnormmatmulsoftmax,分别对应着三个算子,其他的算子则是直接在for循环内实现的。所有的layer都计算一遍后,再加上后处理即可完成一个token的推理。

总结

总得来说,这个库还是有很多的东西值得我们去学习的,学习下大神的编码思维和编码方式。

这篇关于用 C 语言进行大模型推理:探索 llama2.c 仓库(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976065

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首