【算法刨析】完全背包

2024-05-10 09:12
文章标签 算法 背包 完全 刨析

本文主要是介绍【算法刨析】完全背包,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完全背包与01背包的区别

01背包对于一个物品只能选择一次,但是完全背包可以选择任意次; 

思路

和01背包类似,01背包我们只需要判断选或不选,完全背包也是如此,不同的是,对于这个物品我们在判断选后在增加一次选择的机会,直到不选,跳转至下一个物品即可;

一般代码:

 f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);

第k次,不选的话就是它本身,选的话就是直接选择k次即可;

当然这个代码在数据稍微大一点的时候就会超出时间限制;

#include<iostream>
using namespace std;
const int N=1004;
int f[N][N];
int w[N],v[N];int main()
{int n,m;cin>>n>>m;for(int i=1;i<=n;i++){cin>>v[i]>>w[i];}for(int i=1;i<=n;i++){for(int j=0;j<=m;j++){for(int k=0;k*v[i]<=j;k++){f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);}}}cout<<f[n][m]<<endl;
}

优化思路

上面代码会超出时间限制是因为三层循环,下面我们来把第三层循环优化掉:

f[i][j]=max(f[i][j],f[i-1][j-v]+w,f[i-1][j-2*v]+2*w,f[i-1][j-3*v]+3*w......f[i-1][j-k*v]+k*w)

f[i][j-v]=max(             f[i][j-v],f[i-1][j-2*v]+w,f[i-1][j-3*v]+2*w......f[i-1][j-k*v]+k*w)

f[i-1][j-v]+w,f[i-1][j-2*v]+2*w,f[i-1][j-3*v]+3*w......f[i-1][j-k*v]+k*w 不就是f[i][j-v]+w

那么我们可以得到:f[i][j]=max(f[i][j],f[i-1][j-v]+w)

这样我们不就可以不用写第三层循环了吗?

直接用:

            f[i][j]=f[i-1][j];
            if(j>=v[i])
            f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);

优化代码:

#include<iostream>
using namespace std;
const int N=1004;
int f[N][N];
int w[N],v[N];int main()
{int n,m;cin>>n>>m;for(int i=1;i<=n;i++){cin>>v[i]>>w[i];}for(int i=1;i<=n;i++){for(int j=0;j<=m;j++){f[i][j]=f[i-1][j];if(j>=v[i])f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);}}cout<<f[n][m]<<endl;
}

我们来看一下核心代码:

            f[i][j]=f[i-1][j];
            if(j>=v[i])
            f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);

还记得01背包的代码吗?
             f[i][j] = f[i - 1][j];

             if(j>=v[i])
             f[i][j]= max( f[i - 1][j],f[i - 1][j - v[i]] + w[i] );

是不是只有(红色标记):

  f[i][j]= max( f[i - 1][j],f[i - 1][j - v[i]] + w[i] );不同

再次优化代码:

注意:

这里我的j的大小是从小到大开始的:

01背包中,f[i][j]= max( f[i - 1][j],f[i - 1][j - v[i]] + w[i] );对于f[j]就相当于f[i-1][j]的大小,如果从小到大遍历,那么f[i-1][j]的大小就会发现变化,那么优化后的代码就不满足我们所推导的公式,所以我们要从大到小;

类比于01背包,完全背包的公式, f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);对于这个公式如果从大到小就会改变f[i][j]的大小,不满足所推导的公式;

#include<iostream>
#include<cstring>
using namespace std;
const int N=1e4;
int f[N];
int w[N],v[N];int main()
{int n,m;cin>>n>>m;for(int i=0;i<n;i++)cin>>v[i]>>w[i];for(int i=0;i<n;i++){for(int j=v[i];j<=m;j++){f[j]=max(f[j],f[j-v[i]]+w[i]);}}cout<<f[m]<<endl;
}

以上就是全部内容!!

这篇关于【算法刨析】完全背包的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976014

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig