Mac YOLO V9推理测试

2024-05-10 04:36
文章标签 mac yolo 测试 推理 v9

本文主要是介绍Mac YOLO V9推理测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境:

Mac M1 (MacOS Sonoma 14.3.1)

Python 3.11+PyTorch 2.1.2

一、准备工作

工程及模型下载:​​​​​​​https://github.com/WongKinYiu/yolov9

git clone https://github.com/WongKinYiu/yolov9.git

克隆后安装相关依赖(没啥依赖好装的)

cd yolov9
pip install -r requirements.txt -q

YOLOv9目前提供了四种模型下载:yolov9-c.pt、yolov9-e.pt、gelan-c.pt、gelan-e.pt(建议手动下载)。

wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt
wget -P /Users/zhujiahui/Local/model/yolov9 -q https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt

注:gelan(Generalized ELAN ,广义ELAN),在yolov9中,gelan被作为block用在了backbone中。

将下载好的模型放到指定的位置。

下载示例图片(也可手动下载放置),放到data/images下:

wget -P data/images -q https://media.roboflow.com/notebooks/examples/dog.jpeg

二、推理

基于yolov9-c.pt进行推理

python detect_dual.py --weights /Users/zhujiahui/Local/model/yolov9/yolov9-c.pt --conf 0.1 --source data/images/dog.jpeg --device cpu

基于yolov9-e.pt进行推理

python detect_dual.py --weights /Users/zhujiahui/Local/model/yolov9/yolov9-e.pt --conf 0.1 --source data/images/dog.jpeg --device cpu

注意:

yolo模型的推理要用detect_dual.py

本人是在Mac环境下跑的,因此设置为--device cpu或--device mps。

运行过程中会输出如下信息:

detect_dual: weights=['/Users/zhujiahui/Local/model/yolov9/yolov9-c.pt'], source=data/images/dog.jpeg, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.1, iou_thres=0.45, max_det=1000, device=cpu, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1

YOLO 🚀 v0.1-89-g93f1a28 Python-3.11.4 torch-2.1.2 CPU

Fusing layers... 

Model summary: 604 layers, 50880768 parameters, 0 gradients, 237.6 GFLOPs

image 1/1 /Users/zhujiahui/Local/PycharmProjects/yolov9/data/images/dog.jpeg: 640x384 1 person, 1 car, 1 dog, 1 backpack, 313.4ms

Speed: 0.6ms pre-process, 313.4ms inference, 0.6ms NMS per image at shape (1, 3, 640, 640)

Results saved to runs/detect/exp

最终会在runs/detect/exp下生成相关结果图片。运行多次后依次为exp2、exp3… 

原始yolov9-c.ptyolov9-e.pt

从以上结果可知yolov9-e.pt的效果更好,能够额外识别正确背包和手提包。

基于gelan-c.pt进行推理

python detect.py --weights /Users/zhujiahui/Local/model/yolov9/gelan-c.pt --conf 0.1 --source data/images/dog.jpeg --device cpu

基于gelan-e.pt进行推理

python detect.py --weights /Users/zhujiahui/Local/model/yolov9/gelan-e.pt --conf 0.1 --source data/images/dog.jpeg --device cpu

注意:gelan模型的推理要用detect.py

结果如下:

原始gelan-c.ptgelan-e.pt

效果不如yolov9-e.pt。

三、相关问题

1. Mac下--device cpu和--device mps速度问题

明显cpu更快,不明所以。

2. AttributeError: 'list' object has no attribute 'device'

Traceback (most recent call last):

  File "/Users/zhujiahui/Local/PycharmProjects/yolov9/detect.py", line 231, in <module>

    main(opt)

  File "/Users/zhujiahui/Local/PycharmProjects/yolov9/detect.py", line 226, in main

    run(**vars(opt))

  File "/opt/anaconda3/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context

    return func(*args, **kwargs)

           ^^^^^^^^^^^^^^^^^^^^^

  File "/Users/zhujiahui/Local/PycharmProjects/yolov9/detect.py", line 102, in run

    pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

  File "/Users/zhujiahui/Local/PycharmProjects/yolov9/utils/general.py", line 905, in non_max_suppression

    device = prediction.device

             ^^^^^^^^^^^^^^^^^

AttributeError: 'list' object has no attribute 'device'

原因:对yolov9-c.pt/yolov9-e.pt采用了detect.py去推理,yolov9-c.pt/yolov9-e.pt采用train_dual.py训练得到,应该对应地采用detect_dual.py进行推理。

解决方案:

python detect.py --weights /Users/zhujiahui/Local/model/yolov9/yolov9-c.pt --conf 0.1 --source data/images/dog.jpeg --device cpu
改为
python detect_dual.py --weights /Users/zhujiahui/Local/model/yolov9/yolov9-c.pt --conf 0.1 --source data/images/dog.jpeg --device cpu

3. IndexError: index 1 is out of bounds for dimension 0 with size 1

Traceback (most recent call last):

  File "/Users/zhujiahui/Local/PycharmProjects/yolov9/detect_dual.py", line 232, in <module>

    main(opt)

  File "/Users/zhujiahui/Local/PycharmProjects/yolov9/detect_dual.py", line 227, in main

    run(**vars(opt))

  File "/opt/anaconda3/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context

    return func(*args, **kwargs)

           ^^^^^^^^^^^^^^^^^^^^^

  File "/Users/zhujiahui/Local/PycharmProjects/yolov9/detect_dual.py", line 99, in run

    pred = pred[0][1]

           ~~~~~~~^^^

IndexError: index 1 is out of bounds for dimension 0 with size 1

原因:对gelan-c.pt/gelan-e.pt采用了detect_dual.py去推理,gelan-c.pt/gelan-e.pt需采用detect.py进行推理。

解决方案:

python detect_dual.py --weights /Users/zhujiahui/Local/model/yolov9/gelan-c.pt --conf 0.1 --source data/images/dog.jpeg --device cpu
改为
python detect.py --weights /Users/zhujiahui/Local/model/yolov9/gelan-c.pt --conf 0.1 --source data/images/dog.jpeg --device cpu

这篇关于Mac YOLO V9推理测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975453

相关文章

Python解析器安装指南分享(Mac/Windows/Linux)

《Python解析器安装指南分享(Mac/Windows/Linux)》:本文主要介绍Python解析器安装指南(Mac/Windows/Linux),具有很好的参考价值,希望对大家有所帮助,如有... 目NMNkN录1js. 安装包下载1.1 python 下载官网2.核心安装方式3. MACOS 系统安

如何关闭 Mac 触发角功能或设置修饰键? mac电脑防止误触设置技巧

《如何关闭Mac触发角功能或设置修饰键?mac电脑防止误触设置技巧》从Windows换到iOS大半年来,触发角是我觉得值得吹爆的MacBook效率神器,成为一大说服理由,下面我们就来看看mac电... MAC 的「触发角」功能虽然提高了效率,但过于灵敏也让不少用户感到头疼。特别是在关键时刻,一不小心就可能触

mac安装nvm(node.js)多版本管理实践步骤

《mac安装nvm(node.js)多版本管理实践步骤》:本文主要介绍mac安装nvm(node.js)多版本管理的相关资料,NVM是一个用于管理多个Node.js版本的命令行工具,它允许开发者在... 目录NVM功能简介MAC安装实践一、下载nvm二、安装nvm三、安装node.js总结NVM功能简介N

SpringBoot中整合RabbitMQ(测试+部署上线最新完整)的过程

《SpringBoot中整合RabbitMQ(测试+部署上线最新完整)的过程》本文详细介绍了如何在虚拟机和宝塔面板中安装RabbitMQ,并使用Java代码实现消息的发送和接收,通过异步通讯,可以优化... 目录一、RabbitMQ安装二、启动RabbitMQ三、javascript编写Java代码1、引入

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

C++实现获取本机MAC地址与IP地址

《C++实现获取本机MAC地址与IP地址》这篇文章主要为大家详细介绍了C++实现获取本机MAC地址与IP地址的两种方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实际工作中,项目上常常需要获取本机的IP地址和MAC地址,在此使用两种方案获取1.MFC中获取IP和MAC地址获取

C/C++通过IP获取局域网网卡MAC地址

《C/C++通过IP获取局域网网卡MAC地址》这篇文章主要为大家详细介绍了C++如何通过Win32API函数SendARP从IP地址获取局域网内网卡的MAC地址,感兴趣的小伙伴可以跟随小编一起学习一下... C/C++通过IP获取局域网网卡MAC地址通过win32 SendARP获取MAC地址代码#i

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

macOS怎么轻松更换App图标? Mac电脑图标更换指南

《macOS怎么轻松更换App图标?Mac电脑图标更换指南》想要给你的Mac电脑按照自己的喜好来更换App图标?其实非常简单,只需要两步就能搞定,下面我来详细讲解一下... 虽然 MACOS 的个性化定制选项已经「缩水」,不如早期版本那么丰富,www.chinasem.cn但我们仍然可以按照自己的喜好来更换

mac安装redis全过程

《mac安装redis全过程》文章内容主要介绍了如何从官网下载指定版本的Redis,以及如何在自定义目录下安装和启动Redis,还提到了如何修改Redis的密码和配置文件,以及使用RedisInsig... 目录MAC安装Redis安装启动redis 配置redis 常用命令总结mac安装redis官网下