本文主要是介绍数学之路-python计算实战(21)-机器视觉-拉普拉斯线性滤波,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
拉普拉斯线性滤波,.边缘检测
Laplacian
Calculates the Laplacian of an image.
- C++: void Laplacian (InputArray src, OutputArray dst, int ddepth, int ksize=1, double scale=1, double delta=0, int borderType=BORDER_DEFAULT )
- Python: cv2. Laplacian (src, ddepth [, dst [, ksize [, scale [, delta [, borderType ] ] ] ] ] ) → dst
- C: void cvLaplace (const CvArr* src, CvArr* dst, int aperture_size=3 )
- Python: cv. Laplace (src, dst, apertureSize=3 ) → None
-
Parameters: - src – Source image.
- dst – Destination image of the same size and the same number of channels as src .
- ddepth – Desired depth of the destination image.
- ksize – Aperture size used to compute the second-derivative filters. See getDerivKernels() for details. The size must be positive and odd.
- scale – Optional scale factor for the computed Laplacian values. By default, no scaling is applied. See getDerivKernels() for details.
- delta – Optional delta value that is added to the results prior to storing them in dst .
- borderType – Pixel extrapolation method. SeeborderInterpolate() for details.
The function calculates the Laplacian of the source image by adding up the second x and y derivatives calculated using the Sobel operator:
This is done when ksize > 1 . When ksize == 1 , the Laplacian is computed by filtering the image with the following aperture:
Laplace
计算图像的 Laplacian 变换
void cvLaplace( const CvArr* src, CvArr* dst, int aperture_size=3 );
- src
- 输入图像. dst
- 输出图像. aperture_size
- 核大小 (与 cvSobel 中定义一样).
函数 cvLaplace 计算输入图像的 Laplacian变换,方法是先用 sobel 算子计算二阶 x- 和 y- 差分,再求和:
对 aperture_size=1 则给出最快计算结果,相当于对图像采用如下内核做卷积:
本博客所有内容是原创,如果转载请注明来源
http://blog.csdn.net/myhaspl/
# -*- coding: utf-8 -*-
#线性锐化滤波,拉普拉斯图像变换
#code:myhaspl@myhaspl.com
import cv2fn="test6.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY)jgimg=cv2.Laplacian(img,-1)
cv2.imshow('src',img)
cv2.imshow('dst',jgimg)
cv2.waitKey()
cv2.destroyAllWindows()
这篇关于数学之路-python计算实战(21)-机器视觉-拉普拉斯线性滤波的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!