数学之路-python计算实战(21)-机器视觉-拉普拉斯线性滤波

本文主要是介绍数学之路-python计算实战(21)-机器视觉-拉普拉斯线性滤波,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

拉普拉斯线性滤波,.边缘检测

  Laplacian

Calculates the Laplacian of an image.

C++:  void  Laplacian (InputArray  src, OutputArray  dst, int  ddepth, int  ksize=1, double  scale=1, double  delta=0, int  borderType=BORDER_DEFAULT  )
Python:   cv2. Laplacian (src, ddepth [, dst [, ksize [, scale [, delta [, borderType ] ] ] ] ] ) → dst
C:  void  cvLaplace (const CvArr*  src, CvArr*  dst, int  aperture_size=3  )
Python:   cv. Laplace (src, dst, apertureSize=3 ) → None
Parameters:
  • src – Source image.
  • dst – Destination image of the same size and the same number of channels as src .
  • ddepth – Desired depth of the destination image.
  • ksize – Aperture size used to compute the second-derivative filters. See getDerivKernels() for details. The size must be positive and odd.
  • scale – Optional scale factor for the computed Laplacian values. By default, no scaling is applied. See getDerivKernels() for details.
  • delta – Optional delta value that is added to the results prior to storing them in dst .
  • borderType – Pixel extrapolation method. SeeborderInterpolate() for details.

The function calculates the Laplacian of the source image by adding up the second x and y derivatives calculated using the Sobel operator:

\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}

This is done when ksize > 1 . When ksize == 1 , the Laplacian is computed by filtering the image with the following 3 \times 3 aperture:

\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}


Laplace

计算图像的 Laplacian 变换

void cvLaplace( const CvArr* src, CvArr* dst, int aperture_size=3 );
src
输入图像.
dst
输出图像.
aperture_size
核大小 (与 cvSobel 中定义一样).

函数 cvLaplace 计算输入图像的 Laplacian变换,方法是先用 sobel 算子计算二阶 x- 和 y- 差分,再求和:


对 aperture_size=1 则给出最快计算结果,相当于对图像采用如下内核做卷积:




本博客所有内容是原创,如果转载请注明来源

http://blog.csdn.net/myhaspl/


# -*- coding: utf-8 -*-   
#线性锐化滤波,拉普拉斯图像变换
#code:myhaspl@myhaspl.com
import cv2fn="test6.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY)jgimg=cv2.Laplacian(img,-1)
cv2.imshow('src',img)
cv2.imshow('dst',jgimg)
cv2.waitKey()
cv2.destroyAllWindows()


这篇关于数学之路-python计算实战(21)-机器视觉-拉普拉斯线性滤波的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975394

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步