LightGBM超参数优化-贝叶斯,网格

2024-05-09 16:44

本文主要是介绍LightGBM超参数优化-贝叶斯,网格,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import hyperopt
from hyperopt import hp,fmin,tpe,Trials,partial
from hyperopt.early_stop import no_progress_loss
#参数的搜索空间
LGBM_params_space={'max_depth':hp.choice('max_depth',np.arange(10,50).tolist()),
'num_leaves':hp.choice('num_leaves',np.arange(10,50).tolist()),
'n_estimators':hp.choice('n_estimators',np.arange(10,100).tolist()),
'boosting_type':hp.choice('boosting_type',['gbdt','goss']),
'colsample_bytree':hp.uniform('colsample_bytree',0.2,1.0),#连续性的参数
'learning_rate':hp.uniform('learning_rate',0.001,0.5),
'reg_alpha':hp.uniform('reg_alpha',0.01,0.5),#L1
'reg_lambda':hp.uniform('reg_lambda',0.01,0.5)#l2
}

choice里的参数是独立的,如果用了randint模型会推测参数之间的大小,不太好对调参
在这里插入图片描述

def hyperopt_lgbm(params):max_depth=params['max_depth']num_leaves=params['num_leaves']n_estimators=params['n_estimators']boosting_type=params['boosting_type']colsample_bytree=params['colsample_bytree']learning_rate=params['learning_rate']reg_alpha=params['reg_alpha']reg_lambda=params['reg_lambda']#会根据搜索出的子参数空间,赋值,并进行下列实例化#实例化模型lgbm=LGBMClassifier(random_state=12,max_depth=max_depth,num_leaves=num_leaves,n_estimators=n_estimators,boosting_type=boosting_type,colsample_bytree=colsample_bytree,learning_rate=learning_rate,reg_alpha=reg_alpha,reg_lambda=reg_lambda )#输出交叉验证的结果res=cross_val_score(lgbm,xtrain263,ytrain263).mean()return res
#定义优化函数
def param_hyperopt_lgbm(max_evals):params_best=fmin(fn=hyperopt_lgbm,#目标函数space=LGBM_params_space,algo=tpe.suggest,#算法max_evals=max_evals)#迭代次数return params_best

在这里插入图片描述
在这里插入图片描述
超参数结果不如原始模型,最好是迭代次数的增加
在这里插入图片描述
针对上面的升级改造:训练模式和测试模式两套放在一起,根据最优秀的参数来实例化一个模型
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
二、基于网格搜索的超参数优化—枚举原理,TPE是根据迭代次数猜的,不会穷尽参数
,需要人工辅助判断
在这里插入图片描述
在这里插入图片描述
从大区间逐步缩小区间范围

#设置超参数空间
parameter_space={'num_leaves':range(20,51,5),'max_depth':range(5,15,2),'learning_rate':list(np.linspace(0.01,0.2,5)),'n_estimators':range(10,160,70),'boosting_type':['gbdt','goss'],'colsamp_bytree':[0.6,0.8,1.0]
}
#实例化模型与评估器
lgbm_0=LGBMClassifier(random_state=120)
grid_lgbm0=GridSearchCV(lgbm_0,parameter_space)
#模型训练
grid_lgbm0.fit(xtrain263,ytrain263)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
进行多轮探索
下面使用交叉训练:
超参数调完之后如何有更好的效果,–单独模型的交叉训练-非常有bagging的原理
在这里插入图片描述
取5次预测结果的均值作为最终的预测结果
–不一定有效果,但是可以试一下的
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

这篇关于LightGBM超参数优化-贝叶斯,网格的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/973930

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动