LightGBM超参数优化-贝叶斯,网格

2024-05-09 16:44

本文主要是介绍LightGBM超参数优化-贝叶斯,网格,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import hyperopt
from hyperopt import hp,fmin,tpe,Trials,partial
from hyperopt.early_stop import no_progress_loss
#参数的搜索空间
LGBM_params_space={'max_depth':hp.choice('max_depth',np.arange(10,50).tolist()),
'num_leaves':hp.choice('num_leaves',np.arange(10,50).tolist()),
'n_estimators':hp.choice('n_estimators',np.arange(10,100).tolist()),
'boosting_type':hp.choice('boosting_type',['gbdt','goss']),
'colsample_bytree':hp.uniform('colsample_bytree',0.2,1.0),#连续性的参数
'learning_rate':hp.uniform('learning_rate',0.001,0.5),
'reg_alpha':hp.uniform('reg_alpha',0.01,0.5),#L1
'reg_lambda':hp.uniform('reg_lambda',0.01,0.5)#l2
}

choice里的参数是独立的,如果用了randint模型会推测参数之间的大小,不太好对调参
在这里插入图片描述

def hyperopt_lgbm(params):max_depth=params['max_depth']num_leaves=params['num_leaves']n_estimators=params['n_estimators']boosting_type=params['boosting_type']colsample_bytree=params['colsample_bytree']learning_rate=params['learning_rate']reg_alpha=params['reg_alpha']reg_lambda=params['reg_lambda']#会根据搜索出的子参数空间,赋值,并进行下列实例化#实例化模型lgbm=LGBMClassifier(random_state=12,max_depth=max_depth,num_leaves=num_leaves,n_estimators=n_estimators,boosting_type=boosting_type,colsample_bytree=colsample_bytree,learning_rate=learning_rate,reg_alpha=reg_alpha,reg_lambda=reg_lambda )#输出交叉验证的结果res=cross_val_score(lgbm,xtrain263,ytrain263).mean()return res
#定义优化函数
def param_hyperopt_lgbm(max_evals):params_best=fmin(fn=hyperopt_lgbm,#目标函数space=LGBM_params_space,algo=tpe.suggest,#算法max_evals=max_evals)#迭代次数return params_best

在这里插入图片描述
在这里插入图片描述
超参数结果不如原始模型,最好是迭代次数的增加
在这里插入图片描述
针对上面的升级改造:训练模式和测试模式两套放在一起,根据最优秀的参数来实例化一个模型
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
二、基于网格搜索的超参数优化—枚举原理,TPE是根据迭代次数猜的,不会穷尽参数
,需要人工辅助判断
在这里插入图片描述
在这里插入图片描述
从大区间逐步缩小区间范围

#设置超参数空间
parameter_space={'num_leaves':range(20,51,5),'max_depth':range(5,15,2),'learning_rate':list(np.linspace(0.01,0.2,5)),'n_estimators':range(10,160,70),'boosting_type':['gbdt','goss'],'colsamp_bytree':[0.6,0.8,1.0]
}
#实例化模型与评估器
lgbm_0=LGBMClassifier(random_state=120)
grid_lgbm0=GridSearchCV(lgbm_0,parameter_space)
#模型训练
grid_lgbm0.fit(xtrain263,ytrain263)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
进行多轮探索
下面使用交叉训练:
超参数调完之后如何有更好的效果,–单独模型的交叉训练-非常有bagging的原理
在这里插入图片描述
取5次预测结果的均值作为最终的预测结果
–不一定有效果,但是可以试一下的
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

这篇关于LightGBM超参数优化-贝叶斯,网格的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/973930

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

详解Spring Boot接收参数的19种方式

《详解SpringBoot接收参数的19种方式》SpringBoot提供了多种注解来接收不同类型的参数,本文给大家介绍SpringBoot接收参数的19种方式,感兴趣的朋友跟随小编一起看看吧... 目录SpringBoot接受参数相关@PathVariable注解@RequestHeader注解@Reque

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

java如何调用kettle设置变量和参数

《java如何调用kettle设置变量和参数》文章简要介绍了如何在Java中调用Kettle,并重点讨论了变量和参数的区别,以及在Java代码中如何正确设置和使用这些变量,避免覆盖Kettle中已设置... 目录Java调用kettle设置变量和参数java代码中变量会覆盖kettle里面设置的变量总结ja