快速幂取模运算(Modular Exponentiation)

2024-05-09 15:32

本文主要是介绍快速幂取模运算(Modular Exponentiation),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不考虑取模的快速幂运算(迭代法)

/* Iterative Function to calculate (x^y) in O(logy) */
int power(int x, unsigned int y)
{int res = 1;     // Initialize resultwhile (y > 0){// If y is odd, multiply x with resultif (y & 1)res = res*x;// n must be even nowy = y>>1; // y = y/2x = x*x;  // Change x to x^2}return res;
}

快速幂运算(取模)

/* Iterative Function to calculate (x^n)%p in O(logy) */
/*int可以换成long long 或者 unsigned long long*/
int power(int x, unsigned int y, int p)
{int res = 1;      // Initialize resultx = x % p;  // Update x if it is more than or // equal to pwhile (y > 0){// If y is odd, multiply x with resultif (y & 1)res = (res*x) % p;// y must be even nowy = y>>1; // y = y/2x = (x*x) % p;  }return res;
}

模运算的性质

(AmodP)(B

这篇关于快速幂取模运算(Modular Exponentiation)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/973769

相关文章

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

v0.dev快速开发

探索v0.dev:次世代开发者之利器 今之技艺日新月异,开发者之工具亦随之进步不辍。v0.dev者,新兴之开发者利器也,迅速引起众多开发者之瞩目。本文将引汝探究v0.dev之基本功能与优势,助汝速速上手,提升开发之效率。 何谓v0.dev? v0.dev者,现代化之开发者工具也,旨在简化并加速软件开发之过程。其集多种功能于一体,助开发者高效编写、测试及部署代码。无论汝为前端开发者、后端开发者

利用Django框架快速构建Web应用:从零到上线

随着互联网的发展,Web应用的需求日益增长,而Django作为一个高级的Python Web框架,以其强大的功能和灵活的架构,成为了众多开发者的选择。本文将指导你如何从零开始使用Django框架构建一个简单的Web应用,并将其部署到线上,让世界看到你的作品。 Django简介 Django是由Adrian Holovaty和Simon Willison于2005年开发的一个开源框架,旨在简

CentOs7上Mysql快速迁移脚本

因公司业务需要,对原来在/usr/local/mysql/data目录下的数据迁移到/data/local/mysql/mysqlData。 原因是系统盘太小,只有20G,几下就快满了。 参考过几篇文章,基于大神们的思路,我封装成了.sh脚本。 步骤如下: 1) 先修改好/etc/my.cnf,        ##[mysqld]       ##datadir=/data/loc

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

UE5 半透明阴影 快速解决方案

Step 1: 打开该选项 Step 2: 将半透明材质给到模型后,设置光照的Shadow Resolution Scale,越大,阴影的效果越好

快速排序(java代码实现)

简介: 1.采用“分治”的思想,对于一组数据,选择一个基准元素,这里选择中间元素mid 2.通过第一轮扫描,比mid小的元素都在mid左边,比mid大的元素都在mid右边 3.然后使用递归排序这两部分,直到序列中所有数据均有序为止。 public class csdnTest {public static void main(String[] args){int[] arr = {3,