智能BI(后端)-- 系统优化(安全性,数据存储,限流)

2024-05-09 13:52

本文主要是介绍智能BI(后端)-- 系统优化(安全性,数据存储,限流),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 安全性
  • todo 数据存储
  • 限流
    • 限流的几种算法
    • 限流粒度
    • 限流的实现
      • 本地限流(单机限流)
      • Redisson实现分布式限流(多机限流)

安全性

问题引入:如果用户上传一个超大的文件怎么办?比如1000G?
预防:
只要涉及到用户自主上传的操作,一定要校验文件(图像)
校验什么?

  • 文件的大小
  • 文件的后缀
  • 文件的内容(成本高一点)
  • 文件的合规性,比如敏感内容(建议用第三方审核功能),todo 接入腾讯云的图片万象数据审核(COS对象存储的审核功能)

代码校验实现:

        //校验文件大小long ONE_MB = 1024 * 1024l;long size = multipartFile.getSize();ThrowUtils.throwIf(size > ONE_MB,ErrorCode.PARAMS_ERROR,"文件过大");//校验后缀名String originalFilename = multipartFile.getOriginalFilename();String suffix = FileUtil.getSuffix(originalFilename);List<String> validSuffix = Arrays.asList("png","jpg","svg","webp","jpeg");ThrowUtils.throwIf(!validSuffix.contains(suffix),ErrorCode.PARAMS_ERROR,"文件后缀非法");

todo 数据存储

现状:我们把每个图表的原始数据全部放在了同一个数据表(chart表)的字段里
问题:

  1. 如果用户上传的原始数据量很大,图表数日益增多,查询chart表就会很慢
  2. 对于BI平台,用户是有查看原始数据,对原始数据进行简单查询的需求的,现在如果把所有数据放在一个字段(列)中,查询时,只能取出这个列的所有内容

**解决方案:分库分表:

**把每个图表对应的原始数据单独保存为一个新的数据表,而不是都存在一个字段里
优点:

  1. 存储时,能够分开存储,互不影响(也能增加安全性)
  2. 查询时,可以使用各种sql语句灵活取出需要的字段,查询性能更快

todo 实现:动态sql,这里鱼皮也实现了,不过没有应用,只是测试,等等复习下知识再说

限流

现在的问题:使用系统是需要消耗成本的,用户有可能疯狂刷量,让你破产
解决问题:

  1. 控制成本 -> 限制用户调用总次数
  2. 用户在短时间内疯狂使用,导致服务器资源被占满,其他用户无法使用->限流

思考:限流阈值多大合适?参考正常用户的使用,比如限制单个用户在每秒只能使用一次

限流的几种算法

  1. 固定窗口限流
  2. 滑动窗口限流
  3. 漏桶限流
  4. 领令牌桶限流

限流粒度

  1. 针对某个方法限流
  2. 针对某个用户限流
  3. 针对用户调用某个方法限流

限流的实现

本地限流(单机限流)

每个服务器单独限流,一般适用于单体项目,你的项目只有一个服务器
Guava RateLimiter

import com.google.common.util.concurrent.RateLimiter;public static void main(String[] args) {// 每秒限流5个请求RateLimiter limiter = RateLimiter.create(5.0);while (true) {if (limiter.tryAcquire()) {// 处理请求} else {// 超过流量限制,需要做何处理}}
}

Redisson实现分布式限流(多机限流)

[官方项目仓库和文档]

  1. 引入依赖
<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.28.0</version>
</dependency>  
  1. 创建Redisson配置类
package com.yupi.springbootinit.config;import io.lettuce.core.RedisClient;
import io.swagger.models.auth.In;
import lombok.Data;
import org.redisson.Redisson;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
@ConfigurationProperties("spring.redis")
@Data
public class RedissonConfig {private Integer database;private String host;private Integer port;// spring启动时,会自动创建一个RedissonClient对象@Beanpublic RedissonClient getRedissonClient() {// 1.创建配置对象Config config = new Config();// 2. 添加单机Redisson配置config.useSingleServer()// 设置数据库.setDatabase(1)//设置redis的地址.setAddress("redis://" + host + ":" + port);//3..创建Redisson实例RedissonClient redissonClient = Redisson.create(config);return redissonClient;}}
  1. 创建通用限流管理类RedisLimiterManager

(专门提供 RedisLimiter 限流基础服务),manager包存放通用模版,没有业务逻辑,可以放在任何一个项目里

package com.yupi.springbootinit.manager;import com.yupi.springbootinit.common.ErrorCode;
import com.yupi.springbootinit.exception.BusinessException;
import org.redisson.api.RRateLimiter;
import org.redisson.api.RateIntervalUnit;
import org.redisson.api.RateType;
import org.redisson.api.RedissonClient;
import org.springframework.stereotype.Service;import javax.annotation.Resource;@Service
public class RedisLimiterManager {@Resourceprivate RedissonClient redissonClient;public void doRateLimit(String key){// 创建一个名称为rateLimiter的限流器RRateLimiter rateLimiter = redissonClient.getRateLimiter(key);// 限流器的统计规则(每秒2个请求;连续的请求,最多只能有1个请求被允许通过)// RateType.OVERALL表示速率限制作用于整个令牌桶,即限制所有请求的速率rateLimiter.trySetRate(RateType.OVERALL,2,1, RateIntervalUnit.SECONDS);// 每当一个操作来了后,请求一个令牌boolean canop = rateLimiter.tryAcquire(1);// 如果没有令牌,还想执行操作,就抛出异常if(!canop){throw new BusinessException(ErrorCode.TOO_MANY_REQUEST);}}
}
  1. 测试后整合进项目(一行代码解决)
 //限流判断,每个用户一个限流器
redisLimiterManager.doRateLimit("genChartByAi_" + loginUser.getId());

这篇关于智能BI(后端)-- 系统优化(安全性,数据存储,限流)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/973588

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

redis+lua实现分布式限流的示例

《redis+lua实现分布式限流的示例》本文主要介绍了redis+lua实现分布式限流的示例,可以实现复杂的限流逻辑,如滑动窗口限流,并且避免了多步操作导致的并发问题,具有一定的参考价值,感兴趣的可... 目录为什么使用Redis+Lua实现分布式限流使用ZSET也可以实现限流,为什么选择lua的方式实现

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密