智能BI(后端)-- 系统优化(安全性,数据存储,限流)

2024-05-09 13:52

本文主要是介绍智能BI(后端)-- 系统优化(安全性,数据存储,限流),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 安全性
  • todo 数据存储
  • 限流
    • 限流的几种算法
    • 限流粒度
    • 限流的实现
      • 本地限流(单机限流)
      • Redisson实现分布式限流(多机限流)

安全性

问题引入:如果用户上传一个超大的文件怎么办?比如1000G?
预防:
只要涉及到用户自主上传的操作,一定要校验文件(图像)
校验什么?

  • 文件的大小
  • 文件的后缀
  • 文件的内容(成本高一点)
  • 文件的合规性,比如敏感内容(建议用第三方审核功能),todo 接入腾讯云的图片万象数据审核(COS对象存储的审核功能)

代码校验实现:

        //校验文件大小long ONE_MB = 1024 * 1024l;long size = multipartFile.getSize();ThrowUtils.throwIf(size > ONE_MB,ErrorCode.PARAMS_ERROR,"文件过大");//校验后缀名String originalFilename = multipartFile.getOriginalFilename();String suffix = FileUtil.getSuffix(originalFilename);List<String> validSuffix = Arrays.asList("png","jpg","svg","webp","jpeg");ThrowUtils.throwIf(!validSuffix.contains(suffix),ErrorCode.PARAMS_ERROR,"文件后缀非法");

todo 数据存储

现状:我们把每个图表的原始数据全部放在了同一个数据表(chart表)的字段里
问题:

  1. 如果用户上传的原始数据量很大,图表数日益增多,查询chart表就会很慢
  2. 对于BI平台,用户是有查看原始数据,对原始数据进行简单查询的需求的,现在如果把所有数据放在一个字段(列)中,查询时,只能取出这个列的所有内容

**解决方案:分库分表:

**把每个图表对应的原始数据单独保存为一个新的数据表,而不是都存在一个字段里
优点:

  1. 存储时,能够分开存储,互不影响(也能增加安全性)
  2. 查询时,可以使用各种sql语句灵活取出需要的字段,查询性能更快

todo 实现:动态sql,这里鱼皮也实现了,不过没有应用,只是测试,等等复习下知识再说

限流

现在的问题:使用系统是需要消耗成本的,用户有可能疯狂刷量,让你破产
解决问题:

  1. 控制成本 -> 限制用户调用总次数
  2. 用户在短时间内疯狂使用,导致服务器资源被占满,其他用户无法使用->限流

思考:限流阈值多大合适?参考正常用户的使用,比如限制单个用户在每秒只能使用一次

限流的几种算法

  1. 固定窗口限流
  2. 滑动窗口限流
  3. 漏桶限流
  4. 领令牌桶限流

限流粒度

  1. 针对某个方法限流
  2. 针对某个用户限流
  3. 针对用户调用某个方法限流

限流的实现

本地限流(单机限流)

每个服务器单独限流,一般适用于单体项目,你的项目只有一个服务器
Guava RateLimiter

import com.google.common.util.concurrent.RateLimiter;public static void main(String[] args) {// 每秒限流5个请求RateLimiter limiter = RateLimiter.create(5.0);while (true) {if (limiter.tryAcquire()) {// 处理请求} else {// 超过流量限制,需要做何处理}}
}

Redisson实现分布式限流(多机限流)

[官方项目仓库和文档]

  1. 引入依赖
<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.28.0</version>
</dependency>  
  1. 创建Redisson配置类
package com.yupi.springbootinit.config;import io.lettuce.core.RedisClient;
import io.swagger.models.auth.In;
import lombok.Data;
import org.redisson.Redisson;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
@ConfigurationProperties("spring.redis")
@Data
public class RedissonConfig {private Integer database;private String host;private Integer port;// spring启动时,会自动创建一个RedissonClient对象@Beanpublic RedissonClient getRedissonClient() {// 1.创建配置对象Config config = new Config();// 2. 添加单机Redisson配置config.useSingleServer()// 设置数据库.setDatabase(1)//设置redis的地址.setAddress("redis://" + host + ":" + port);//3..创建Redisson实例RedissonClient redissonClient = Redisson.create(config);return redissonClient;}}
  1. 创建通用限流管理类RedisLimiterManager

(专门提供 RedisLimiter 限流基础服务),manager包存放通用模版,没有业务逻辑,可以放在任何一个项目里

package com.yupi.springbootinit.manager;import com.yupi.springbootinit.common.ErrorCode;
import com.yupi.springbootinit.exception.BusinessException;
import org.redisson.api.RRateLimiter;
import org.redisson.api.RateIntervalUnit;
import org.redisson.api.RateType;
import org.redisson.api.RedissonClient;
import org.springframework.stereotype.Service;import javax.annotation.Resource;@Service
public class RedisLimiterManager {@Resourceprivate RedissonClient redissonClient;public void doRateLimit(String key){// 创建一个名称为rateLimiter的限流器RRateLimiter rateLimiter = redissonClient.getRateLimiter(key);// 限流器的统计规则(每秒2个请求;连续的请求,最多只能有1个请求被允许通过)// RateType.OVERALL表示速率限制作用于整个令牌桶,即限制所有请求的速率rateLimiter.trySetRate(RateType.OVERALL,2,1, RateIntervalUnit.SECONDS);// 每当一个操作来了后,请求一个令牌boolean canop = rateLimiter.tryAcquire(1);// 如果没有令牌,还想执行操作,就抛出异常if(!canop){throw new BusinessException(ErrorCode.TOO_MANY_REQUEST);}}
}
  1. 测试后整合进项目(一行代码解决)
 //限流判断,每个用户一个限流器
redisLimiterManager.doRateLimit("genChartByAi_" + loginUser.getId());

这篇关于智能BI(后端)-- 系统优化(安全性,数据存储,限流)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/973588

相关文章

SpringBoot3.X 整合 MinIO 存储原生方案

《SpringBoot3.X整合MinIO存储原生方案》本文详细介绍了SpringBoot3.X整合MinIO的原生方案,从环境搭建到核心功能实现,涵盖了文件上传、下载、删除等常用操作,并补充了... 目录SpringBoot3.X整合MinIO存储原生方案:从环境搭建到实战开发一、前言:为什么选择MinI

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二