智能BI(后端)-- 系统优化(安全性,数据存储,限流)

2024-05-09 13:52

本文主要是介绍智能BI(后端)-- 系统优化(安全性,数据存储,限流),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 安全性
  • todo 数据存储
  • 限流
    • 限流的几种算法
    • 限流粒度
    • 限流的实现
      • 本地限流(单机限流)
      • Redisson实现分布式限流(多机限流)

安全性

问题引入:如果用户上传一个超大的文件怎么办?比如1000G?
预防:
只要涉及到用户自主上传的操作,一定要校验文件(图像)
校验什么?

  • 文件的大小
  • 文件的后缀
  • 文件的内容(成本高一点)
  • 文件的合规性,比如敏感内容(建议用第三方审核功能),todo 接入腾讯云的图片万象数据审核(COS对象存储的审核功能)

代码校验实现:

        //校验文件大小long ONE_MB = 1024 * 1024l;long size = multipartFile.getSize();ThrowUtils.throwIf(size > ONE_MB,ErrorCode.PARAMS_ERROR,"文件过大");//校验后缀名String originalFilename = multipartFile.getOriginalFilename();String suffix = FileUtil.getSuffix(originalFilename);List<String> validSuffix = Arrays.asList("png","jpg","svg","webp","jpeg");ThrowUtils.throwIf(!validSuffix.contains(suffix),ErrorCode.PARAMS_ERROR,"文件后缀非法");

todo 数据存储

现状:我们把每个图表的原始数据全部放在了同一个数据表(chart表)的字段里
问题:

  1. 如果用户上传的原始数据量很大,图表数日益增多,查询chart表就会很慢
  2. 对于BI平台,用户是有查看原始数据,对原始数据进行简单查询的需求的,现在如果把所有数据放在一个字段(列)中,查询时,只能取出这个列的所有内容

**解决方案:分库分表:

**把每个图表对应的原始数据单独保存为一个新的数据表,而不是都存在一个字段里
优点:

  1. 存储时,能够分开存储,互不影响(也能增加安全性)
  2. 查询时,可以使用各种sql语句灵活取出需要的字段,查询性能更快

todo 实现:动态sql,这里鱼皮也实现了,不过没有应用,只是测试,等等复习下知识再说

限流

现在的问题:使用系统是需要消耗成本的,用户有可能疯狂刷量,让你破产
解决问题:

  1. 控制成本 -> 限制用户调用总次数
  2. 用户在短时间内疯狂使用,导致服务器资源被占满,其他用户无法使用->限流

思考:限流阈值多大合适?参考正常用户的使用,比如限制单个用户在每秒只能使用一次

限流的几种算法

  1. 固定窗口限流
  2. 滑动窗口限流
  3. 漏桶限流
  4. 领令牌桶限流

限流粒度

  1. 针对某个方法限流
  2. 针对某个用户限流
  3. 针对用户调用某个方法限流

限流的实现

本地限流(单机限流)

每个服务器单独限流,一般适用于单体项目,你的项目只有一个服务器
Guava RateLimiter

import com.google.common.util.concurrent.RateLimiter;public static void main(String[] args) {// 每秒限流5个请求RateLimiter limiter = RateLimiter.create(5.0);while (true) {if (limiter.tryAcquire()) {// 处理请求} else {// 超过流量限制,需要做何处理}}
}

Redisson实现分布式限流(多机限流)

[官方项目仓库和文档]

  1. 引入依赖
<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.28.0</version>
</dependency>  
  1. 创建Redisson配置类
package com.yupi.springbootinit.config;import io.lettuce.core.RedisClient;
import io.swagger.models.auth.In;
import lombok.Data;
import org.redisson.Redisson;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
@ConfigurationProperties("spring.redis")
@Data
public class RedissonConfig {private Integer database;private String host;private Integer port;// spring启动时,会自动创建一个RedissonClient对象@Beanpublic RedissonClient getRedissonClient() {// 1.创建配置对象Config config = new Config();// 2. 添加单机Redisson配置config.useSingleServer()// 设置数据库.setDatabase(1)//设置redis的地址.setAddress("redis://" + host + ":" + port);//3..创建Redisson实例RedissonClient redissonClient = Redisson.create(config);return redissonClient;}}
  1. 创建通用限流管理类RedisLimiterManager

(专门提供 RedisLimiter 限流基础服务),manager包存放通用模版,没有业务逻辑,可以放在任何一个项目里

package com.yupi.springbootinit.manager;import com.yupi.springbootinit.common.ErrorCode;
import com.yupi.springbootinit.exception.BusinessException;
import org.redisson.api.RRateLimiter;
import org.redisson.api.RateIntervalUnit;
import org.redisson.api.RateType;
import org.redisson.api.RedissonClient;
import org.springframework.stereotype.Service;import javax.annotation.Resource;@Service
public class RedisLimiterManager {@Resourceprivate RedissonClient redissonClient;public void doRateLimit(String key){// 创建一个名称为rateLimiter的限流器RRateLimiter rateLimiter = redissonClient.getRateLimiter(key);// 限流器的统计规则(每秒2个请求;连续的请求,最多只能有1个请求被允许通过)// RateType.OVERALL表示速率限制作用于整个令牌桶,即限制所有请求的速率rateLimiter.trySetRate(RateType.OVERALL,2,1, RateIntervalUnit.SECONDS);// 每当一个操作来了后,请求一个令牌boolean canop = rateLimiter.tryAcquire(1);// 如果没有令牌,还想执行操作,就抛出异常if(!canop){throw new BusinessException(ErrorCode.TOO_MANY_REQUEST);}}
}
  1. 测试后整合进项目(一行代码解决)
 //限流判断,每个用户一个限流器
redisLimiterManager.doRateLimit("genChartByAi_" + loginUser.getId());

这篇关于智能BI(后端)-- 系统优化(安全性,数据存储,限流)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/973588

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS