Reinforcement Learning强化学习系列之五:值近似方法Value Approximation

本文主要是介绍Reinforcement Learning强化学习系列之五:值近似方法Value Approximation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

前面说到了强化学习中的蒙特卡洛方法(MC)以及时序差分(TD)的方法,这些方法针对的基本是离散的数据,而一些连续的状态则很难表示,对于这种情况,通常在强化学习里有2中方法,一种是针对value function的方法,也就是本文中提到的值近似(value approximation);另一种则是后面要讲到的policy gradient。

值近似的方法

这里写图片描述
值近似的方法根本上是使用一个值函数来近似表示该状态的返回值,对于状态 S S ,在一个序列中间,我们使用一个参数函数v^(S,w)来近似表示观测到的真实值 vπ(S) v π ( S ) ,学习使用普通的梯度下降的方式进行,对于一个观察序列的每一个step均可以作为一个训练的过程。当然这个值函数可以加上动作 a a 表示成为Q函数的近似 vˆ(S,a,w) v ^ ( S , a , w )

示例

这里写图片描述
问题描述:一个汽车从谷底向上开,但是汽车的马力不足以支撑其到终点,因此最好的策略是需要先开到谷底的左边然后再加速,利用一部分惯性到达终点。

  1. 这里面的状态可以描述为: (xt),(xt^) ( 横 向 位 置 x t ) , ( 速 度 x t ^ )
  2. 动作空间为3个, 1,0,1 − 1 , 0 , 1 ,分别表示全力向左,不动和全力向右
  3. 状态序列更新的方式为:
    xt+1=bound[xt+xt+1^] x t + 1 = b o u n d [ x t + x t + 1 ^ ]

    xt+1^=bound[xt^+0.001A0.0025cos(3xt)] x t + 1 ^ = b o u n d [ x t ^ + 0.001 A − 0.0025 c o s ( 3 x t ) ]

这里bound表示其约束范围,横轴坐标 xt x t 的范围是 1.5xt0.5 − 1.5 ≤ x t ≤ 0.5 ,速度的范围是 0.07xt^0.07 − 0.07 ≤ x t ^ ≤ 0.07 ,当 xt x t 行到最坐标的时候,将会被置零。

在本示例中,将使用Q-learning的值近似方法,采用的线性函数来表示Q函数。

实验环境

实验将基于openAI所提供的gym包的mountaincar-v0这一个环境,openAI提供了很多的游戏环境,都可以进行相关的强化学习实验。
openAI目前支持mac OS 和Linux环境,可以直接使用pip install gym的方式安装其最新的版本的gym,但是对于python2.7来说,安装最新的版本0.9.6,可能会出现cannot import name spaces的问题,选择安装0.9.5则没有这个问题

关键代码

class Estimator(object):def __init__(self):self.models=[]for _ in range(env.action_space.n):model = SGDRegressor(learning_rate="constant")model.partial_fit([self.feature_state(env.reset())],[0])self.models.append(model)def predict(self,s,a=None):s=self.feature_state(s)if a:return self.models[a].predict([s])[0]else:return [self.models[m].predict([s])[0] for m in range(env.action_space.n)]def update(self,s,a,target):s=self.feature_state(s)self.models[a].partial_fit([s],[target])def feature_state(self,s):return featurizer.transform(scaler.transform([s]))[0]def make_epsilon_greedy_policy(estimator,nA,epsilon):def epsilon_greedy_policy(observation):best_action = np.argmax(estimator.predict(observation))A =np.ones(nA,dtype=np.float32)*epsilon/nAA[best_action] += 1-epsilonreturn Areturn epsilon_greedy_policydef Q_learning_with_value_approximation(env,estimator,epoch_num,discount_factor=1.0, epsilon=0.1, epsilon_decay=1.0):# stats = plotting.EpisodeStats(#     episode_lengths=np.zeros(epoch_num),#     episode_rewards=np.zeros(epoch_num))for i_epoch_num in range(epoch_num):policy = make_epsilon_greedy_policy\(estimator,env.action_space.n,epsilon*epsilon_decay**i_epoch_num)state = env.reset()for it in itertools.count():action_probs = policy(state)action = np.random.choice(np.arange(len(action_probs)), p=action_probs)next_state,reward,done,_=env.step(action)q_values_next = estimator.predict(next_state)td_target = reward + discount_factor * np.max(q_values_next)estimator.update(state, action, td_target)# stats.episode_rewards[i_epoch_num] += reward# stats.episode_lengths[i_epoch_num] = itprint("\rStep {} @ Episode {}/{}".format(it, i_epoch_num + 1, epoch_num))if done:print itbreakstate = next_state

其中,将两个状态参数使用RBF核函数进行转换为一维长度为400的特征向量,使用的普通的SGDRegressor。

结果

运行100代后的函数cost值为
这里写图片描述

代码链接

代码可以在我的GitHub链接里找到

这篇关于Reinforcement Learning强化学习系列之五:值近似方法Value Approximation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972816

相关文章

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

mss32.dll文件丢失怎么办? 电脑提示mss32.dll丢失的多种修复方法

《mss32.dll文件丢失怎么办?电脑提示mss32.dll丢失的多种修复方法》最近,很多电脑用户可能遇到了mss32.dll文件丢失的问题,导致一些应用程序无法正常启动,那么,如何修复这个问题呢... 在电脑常年累月的使用过程中,偶尔会遇到一些问题令人头疼。像是某个程序尝试运行时,系统突然弹出一个错误提

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

电脑提示找不到openal32.dll文件怎么办? openal32.dll丢失完美修复方法

《电脑提示找不到openal32.dll文件怎么办?openal32.dll丢失完美修复方法》openal32.dll是一种重要的系统文件,当它丢失时,会给我们的电脑带来很大的困扰,很多人都曾经遇到... 在使用电脑过程中,我们常常会遇到一些.dll文件丢失的问题,而openal32.dll的丢失是其中比较