基因表达微阵列数据分类的多目标启发式算法

2024-05-09 00:58

本文主要是介绍基因表达微阵列数据分类的多目标启发式算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#引用

##LaTex

@article{LV201613,
title = “A multi-objective heuristic algorithm for gene expression microarray data classification”,
journal = “Expert Systems with Applications”,
volume = “59”,
pages = “13 - 19”,
year = “2016”,
issn = “0957-4174”,
doi = “https://doi.org/10.1016/j.eswa.2016.04.020”,
url = “http://www.sciencedirect.com/science/article/pii/S0957417416301865”,
author = “Jia Lv and Qinke Peng and Xiao Chen and Zhi Sun”,
keywords = “Microarray, Gene selection, Small number of selected genes, Multi-objective, Heuristic algorithm”
}

##Normal

Jia Lv, Qinke Peng, Xiao Chen, Zhi Sun,
A multi-objective heuristic algorithm for gene expression microarray data classification,
Expert Systems with Applications,
Volume 59,
2016,
Pages 13-19,
ISSN 0957-4174,
https://doi.org/10.1016/j.eswa.2016.04.020.
(http://www.sciencedirect.com/science/article/pii/S0957417416301865)
Keywords: Microarray; Gene selection; Small number of selected genes; Multi-objective; Heuristic algorithm


#摘要

Microarray data 微阵列数据
analytic hierarchy process (AHP)
Univariate Marginal Distribution Algorithm

the fewer the selected genes are, the less cost the disease prognosis expert system is.


#主要内容


##1 特征预选择

a filter-based gene ranking algorithm — mRMR:
特征与类之间的相关性(max-relevance 最大相关)
特征之间的冗余度(min-redundancy 最小冗余)

这里写图片描述

单个特征的性能
为防止丢失在组中表现好的特征,选300个特征


##2 多目标模型

这里写图片描述


##3 MOEDA

多目标the estimation of distribution algorithm (EDA) — MOEDA

elite individuals ( EIs )
regenerated individuals ( RIs )

probabilistic model:

这里写图片描述

classification accuracy (ACC)
the number of selected features (NSF)

Higher and fewer rule. (HFR)
ACC绝对比NSF重要

  • 根据ACC对个体排序
  • 对于相同ACC,根据NSF排序

Forcibly decrease rule. (FDR)
随着演化的进行,计算NSF的上限 — U L l UL^l ULl(逐渐降低)
N L l = q 2 ⌊ l w ⌋ NL^l = \frac{q}{2^{\left\lfloor\frac{l}{w}\right\rfloor}} NLl=2wlq
l l l — 代数
q q q — 预选择的特征数目
w w w — 常数

每个特征对应一个选择概率

mutation rules — 防止落入局部最优
the elite reserved strategy — 防止最优个体丢失

SVM + the radial basis function (RBF)
SVM-RBF
参数: c c c γ \gamma γ

同时优化参数与特征

这里写图片描述

参数计算

这里写图片描述

p ∈ { c , γ } p \in \left\{ c, \gamma \right\} p{c,γ}
max ⁡ p \max_p maxp — 参数最大值
min ⁡ p \min_p minp — 参数最小值
d d d — 二进制字符串的十进制值
l p l_p lp — 二进制字符串的长度
l c = l γ = 25 l_c = l_\gamma = 25 lc=lγ=25
max ⁡ c = 256 \max_c = 256 maxc=256
max ⁡ γ = 16 \max_\gamma = 16 maxγ=16


#4 试验

这里写图片描述

10-fold cross validation

‘the N best features are always not the best N features’.

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这篇关于基因表达微阵列数据分类的多目标启发式算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971944

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。