基因表达微阵列数据分类的多目标启发式算法

2024-05-09 00:58

本文主要是介绍基因表达微阵列数据分类的多目标启发式算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#引用

##LaTex

@article{LV201613,
title = “A multi-objective heuristic algorithm for gene expression microarray data classification”,
journal = “Expert Systems with Applications”,
volume = “59”,
pages = “13 - 19”,
year = “2016”,
issn = “0957-4174”,
doi = “https://doi.org/10.1016/j.eswa.2016.04.020”,
url = “http://www.sciencedirect.com/science/article/pii/S0957417416301865”,
author = “Jia Lv and Qinke Peng and Xiao Chen and Zhi Sun”,
keywords = “Microarray, Gene selection, Small number of selected genes, Multi-objective, Heuristic algorithm”
}

##Normal

Jia Lv, Qinke Peng, Xiao Chen, Zhi Sun,
A multi-objective heuristic algorithm for gene expression microarray data classification,
Expert Systems with Applications,
Volume 59,
2016,
Pages 13-19,
ISSN 0957-4174,
https://doi.org/10.1016/j.eswa.2016.04.020.
(http://www.sciencedirect.com/science/article/pii/S0957417416301865)
Keywords: Microarray; Gene selection; Small number of selected genes; Multi-objective; Heuristic algorithm


#摘要

Microarray data 微阵列数据
analytic hierarchy process (AHP)
Univariate Marginal Distribution Algorithm

the fewer the selected genes are, the less cost the disease prognosis expert system is.


#主要内容


##1 特征预选择

a filter-based gene ranking algorithm — mRMR:
特征与类之间的相关性(max-relevance 最大相关)
特征之间的冗余度(min-redundancy 最小冗余)

这里写图片描述

单个特征的性能
为防止丢失在组中表现好的特征,选300个特征


##2 多目标模型

这里写图片描述


##3 MOEDA

多目标the estimation of distribution algorithm (EDA) — MOEDA

elite individuals ( EIs )
regenerated individuals ( RIs )

probabilistic model:

这里写图片描述

classification accuracy (ACC)
the number of selected features (NSF)

Higher and fewer rule. (HFR)
ACC绝对比NSF重要

  • 根据ACC对个体排序
  • 对于相同ACC,根据NSF排序

Forcibly decrease rule. (FDR)
随着演化的进行,计算NSF的上限 — U L l UL^l ULl(逐渐降低)
N L l = q 2 ⌊ l w ⌋ NL^l = \frac{q}{2^{\left\lfloor\frac{l}{w}\right\rfloor}} NLl=2wlq
l l l — 代数
q q q — 预选择的特征数目
w w w — 常数

每个特征对应一个选择概率

mutation rules — 防止落入局部最优
the elite reserved strategy — 防止最优个体丢失

SVM + the radial basis function (RBF)
SVM-RBF
参数: c c c γ \gamma γ

同时优化参数与特征

这里写图片描述

参数计算

这里写图片描述

p ∈ { c , γ } p \in \left\{ c, \gamma \right\} p{c,γ}
max ⁡ p \max_p maxp — 参数最大值
min ⁡ p \min_p minp — 参数最小值
d d d — 二进制字符串的十进制值
l p l_p lp — 二进制字符串的长度
l c = l γ = 25 l_c = l_\gamma = 25 lc=lγ=25
max ⁡ c = 256 \max_c = 256 maxc=256
max ⁡ γ = 16 \max_\gamma = 16 maxγ=16


#4 试验

这里写图片描述

10-fold cross validation

‘the N best features are always not the best N features’.

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这篇关于基因表达微阵列数据分类的多目标启发式算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971944

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密