本文主要是介绍微阵列数据特征选择的模因算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
#引用
##LaTex
@inproceedings{Zhu:2007:MAF:1418707.1418870,
author = {Zhu, Zexuan and Ong, Yew-Soon},
title = {Memetic Algorithms for Feature Selection on Microarray Data},
booktitle = {Proceedings of the 4th International Symposium on Neural Networks: Advances in Neural Networks},
series = {ISNN '07},
year = {2007},
isbn = {978-3-540-72382-0},
location = {Nanjing, China},
pages = {1327–1335},
numpages = {9},
url = {http://dx.doi.org/10.1007/978-3-540-72383-7_155},
doi = {10.1007/978-3-540-72383-7_155},
acmid = {1418870},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg},
}
##Normal
Zexuan Zhu and Yew-Soon Ong. 2007. Memetic Algorithms for Feature Selection on Microarray Data. In Proceedings of the 4th international symposium on Neural Networks: Advances in Neural Networks (ISNN '07), Derong Liu, Shumin Fei, Zeng-Guang Hou, Huaguang Zhang, and Changyin Sun (Eds.). Springer-Verlag, Berlin, Heidelberg, 1327-1335. DOI=http://dx.doi.org/10.1007/978-3-540-72383-7_155
#摘要
two novel memetic algorithms (MAs)
synergies of Genetic Algorithm (wrapper methods) and local search methods (¯lter methods) under a memetic framework
- Wrapper-Filter Feature Selection Algorithm (WFFSA)
- Markov Blanket-Embedded Genetic Algorithm (MBEGA)
not significantly statistically di®erent
MBEGA is observed to converge to more compact gene subsets than WFFSA
more suitable gene subset
#主要内容
microarray technology
microarray data
a balanced .632+ external bootstrap
【1】C. Ambroise, G. McLachlan, Selection bias in gene extraction on the basis of microarray gene-expression data, Proc. Natl. Sci. USA 99 (2002) 6562–6566.
这篇关于微阵列数据特征选择的模因算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!