一种可扩展的同时进化实例和特征选择方法

2024-05-09 00:58

本文主要是介绍一种可扩展的同时进化实例和特征选择方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#引用

##Latex

@article{GARCIAPEDRAJAS2013150,
title = “A scalable approach to simultaneous evolutionary instance and feature selection”,
journal = “Information Sciences”,
volume = “228”,
pages = “150 - 174”,
year = “2013”,
issn = “0020-0255”,
doi = “https://doi.org/10.1016/j.ins.2012.10.006”,
url = “http://www.sciencedirect.com/science/article/pii/S0020025512006718”,
author = “Nicol’{a}s Garc’{\i}a-Pedrajas and Aida de Haro-Garc’{\i}a and Javier P’{e}rez-Rodr’{\i}guez”,
keywords = “Simultaneous instance and feature selection, Instance selection, Feature selection, Instance-based learning, Very large problems”
}

##Normal

Nicolás García-Pedrajas, Aida de Haro-García, Javier Pérez-Rodríguez,
A scalable approach to simultaneous evolutionary instance and feature selection,
Information Sciences,
Volume 228,
2013,
Pages 150-174,
ISSN 0020-0255,
https://doi.org/10.1016/j.ins.2012.10.006.
(http://www.sciencedirect.com/science/article/pii/S0020025512006718)
Keywords: Simultaneous instance and feature selection; Instance selection; Feature selection; Instance-based learning; Very large problems


#摘要

enormous amount of information
bioinformatics, security and intrusion detection and text mining

data reduction — removing

  1. missing

  2. redundant

  3. information-poor data and/or

  4. erroneous data
    from the dataset to obtain a tractable problem size

  5. feature selection

  6. feature-value discretization

  7. instance selection

the divide-and-conquer principle + bookkeeping

in linear time


#主要内容

Instance selection:choosing a subset of the total available data to achieve the original purpose of the datamining application as though all the data were being used

  1. prototype selection(k-Nearest Neighbors)
  2. obtaining the training set for a learning algorithm(classification trees or neural networks)

‘‘the isolation of the smallest set of instances that enable us to predict the class of a query instance with the same (or higher) accuracy than the original set’’

The objectives of feature selection:

  1. To avoid over-fitting and to improve model performance
  2. To provide faster and more cost-effective models
  3. To gain a deeper insight into the underlying processes that generated the data

simultaneous instance and feature selection

这里写图片描述

scalable simultaneous instance and feature selection method (SSIFSM)


#相关工作

three fundamental approaches for scaling up learning methods:

  1. designing fast algorithms
  2. partitioning the data
  3. using a relational representation

The stratification strategy
分层策略
splits the training data into disjoint strata with equal class distribution

这里写图片描述


#算法

Scalable simultaneous instance and feature selection method (SSIFSM)

K K K classes and N N N training instances with M M M features
T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) } T = \left\{ \left(x_1, y_1 \right), \left(x_2, y_2 \right), \ldots, \left(x_N, y_N \right) \right\} T={(x1,y1),(x2,y2),,(xN,yN)}
Y = { 1 , … , K } Y = \left\{ 1, \ldots, K \right\} Y={1,,K}

simultaneous instance and feature selection

Bookkeeping

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

an evolutionary algorithm

这里写图片描述

a CHC algorithm —
Cross-generational elitist selection, Heterogeneous recombination and Cataclysmic mutation

  1. To obtain the next generation for a population of size P P P, the parents and the offspring are put together and the P P P best individuals are selected.
  2. To avoid premature convergence, only different individuals separated by a threshold Hamming distance—in our implementation, the length of the chromosome divided by four—are allowed to mate.
  3. During crossover, two parents exchange exactly half of their nonmatching bits. This operator is referred to as Half Uniform Crossover (HUX).
  4. Mutation is not used during the regular evolution. To avoid premature convergence or stagnation of the search, the population is reinitialized when the individuals are not diverse. In such a case, only the best individual is retained in the new population.

这里写图片描述

a c c ( x ) acc(x) acc(x) — the accuracy — 1-NN classifier
r e d ( x ) red(x) red(x) — the reduction — KaTeX parse error: Unexpected character: '' at position 3: 1 ̲ - \frac{N'}{N}…

α \alpha α — a weighting parameter — 0.5 0.5 0.5

the instance and feature selection

record the number of times that each instance and feature has been selected to be kept
— the number of votes (its similarity to the combination of classifiers in an ensemble by voting)
— repeated for r r r rounds
all the instances of a certain subset belong to the same class — ignored

the combination of the different rounds

the philosophy of ensembles of classifiers
several weak learners are combined to form a strong classifier — several weak (in the sense that they are applied to subsets of the training data) instance and feature selection procedures are combined to produce a strong and fast selection method

bagging or boosting

number of votes — KaTeX parse error: Unexpected character: '' at position 8: [ 0, r ̲\cdot s ] (an instance)
an instance is in s s s subsets in every round.
Each feature is in t t t subsets each round.
KaTeX parse error: Unexpected character: '' at position 8: [ 0, r ̲\cdot t ] (an feature)

threshold

majority voting — at least half (depends heavily on the problem)

automatically

这里写图片描述

θ i \theta_i θi — threshold for instance
θ f \theta_f θf — threshold for feature
T ( θ i , θ f ) T \left( \theta_i, \theta_f \right) T(θi,θf) — the subset of the training set
1-NN classifier
all the possible values
β \beta β — close to 1 1 1 0.75 0.75 0.75
r e d ( x ) = 1 − ( s i + s f ) N + M red \left( x \right) = 1 - \dfrac{ \left( s_i + s_f \right) }{ N + M } red(x)=1N+M(si+sf)

evaluate all possible pairs of instance and feature thresholds — KaTeX parse error: Unexpected character: '' at position 5: [ r ̲\cdot s ] \tim… O ( N 2 M ) O(N^2M) O(N2M)
a divide-and-conquer method
the same partition philosophy
training set is divided into random disjoint subsets and the accuracy is estimated separately in each subset using the average evaluation of all the subsets for the fitness of each pair of thresholds

这里写图片描述
这里写图片描述

The scalability of the method is assured by the following features:

  1. Application of the method to small datasets. Due to the small size of the subsets in which the selection process is applied, the selection process will always be fast, regardless of the complexity of the instance and feature selection method used in the subsets.
  2. Only small datasets must be kept in memory. This allows the application of instance and feature selection when datasets do not fit into memory.
  3. Bookkeeping is applied in the evolution for every subset.

##Complexity of our methodology

linear in the number of instances, N, of the dataset

The process of random partition — O ( N M ) O(NM) O(NM)
a subset of fixed size, n n n
the complexity of the CHC selection algorithm
K K K — the number of operations required by the selection algorithm to perform its task in a dataset of size n n n
N N N instances and M M M features
his selection process once for each subset, N n M m \frac{N}{n} \frac{M}{m} nNmM times
O ( ( N n M m ) K ) O \left( \left( \frac{N}{n} \frac{M}{m} \right) K \right) O((nNmM)K)
r r r rounds
O ( r ( N n M m ) K ) O \left( r \left( \frac{N}{n} \frac{M}{m} \right) K \right) O(r(nNmM)K)
linear
easy parallel implementation


##Parallel implementation

the master/slave architecture
master — the partition of the dataset and sends the subsets to each slave
slave — performs the selection algorithm + returns the selected instances and features to the master
master — stores the votes for each kept instance and feature

这里写图片描述

communication between different tasks
occurs only twice:

  1. Before each slave initiates its selection process, it must receive the subset of data to perform that process. This amount of information is always small because the method is based on each slave taking care of only a small part of the whole dataset. Furthermore, if the slaves can access the disk, they can read the necessary data directly from it.
  2. Once the selection process is finished, the slaves send the selection performed to the master. This selection consists of a list of the selected instances and features, which is a small sequence of integers.

the best value for the votes threshold:

  1. Before each slave initiates the evaluation of a certain pair of thresholds, it must receive the subset of data to perform that task. This amount of information is always small because the method is based on each slave taking care of only a small part of the whole dataset.
  2. Once the evaluation process is finished, the slaves send the evaluation performed to the master. The evaluation is the error obtained when the corresponding pair of thresholds is used, which is a real number.

#试验

50 problems

这里写图片描述

the UCI Machine Learning Repository

the reduction and accuracy
a 10-fold cross-validation method
a 1-nearest neighbor (1-NN) classifier

from small to medium sizes


##Algorithms for the comparison

  1. Nearest neighbor error using all instances and features is chosen as a baseline measure (1-NN). Any method of performing selection of features or instances must at least match the performance of the 1-NN algorithm or improve its accuracy if possible.
  2. As stated, Cano et al. [10] performed a comprehensive comparison of the performances of different evolutionary algorithms for instance selection. They compared a generational genetic algorithm, a steady-state genetic algorithm, a CHC genetic algorithm and a population-based incremental learning algorithm. Among these methods, CHC achieved the best overall performance (ISCHC). Therefore, we have included the CHC algorithm in our comparison. [10] J.R. Cano, F. Herrera, M. Lozano, Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study, IEEE Transactions on Evolutionary Computation 7 (2003) 561–575.
  3. Feature selection using a genetic algorithm (FSCHC). Following the same idea used for instance selection, we used a CHC algorithm for feature selection with the same characteristics of the algorithm used for instance selection.
  4. Instance and feature selection using a genetic algorithm (IS + FSCHC). Combining the two previous methods, we also used a CHC algorithm that simultaneously evolved the instances and features.
  5. Intelligent Multiobjective Evolutionary Algorithm (IMOEA) [13] method. This method is a multi-objective evolutionary algorithm, which considers both instance and feature selection. The algorithm has two objectives, maximization of training accuracy and minimization of the number of instances and features selected. The multi-objective algorithm used is based on Pareto dominance because the approach is common in multi-objective algorithms [65]. The fitness of each individual is the difference between the individuals it dominates and the individuals that dominate it. The algorithm also includes a new crossover operator called intelligent crossover, which incorporates the systematic reasoning ability of orthogonal experimental design [43] to estimate the contribution of each gene to the fitness of the individuals.
  6. The major aim of our method is scalability. However, if scalability can be achieved with a simple random sampling method, it may be argued that our method is superfluous. Thus, our last method for comparison is a CHC algorithm for instance and feature selection, which uses a random sampling of instances (SAMPLING). The method is applied using a random 10% of all the instances in the dataset.

The source code used for all methods is in C and is licensed under the GNU General Public License.

in a cluster of 32 blades
Each blade is a biprocessor DELL Power Edge M600 with four cores per processor
256 cores
a 1 GB network
2.5 GHz
each blade has 16 GB of memory


##Statistical tests

Iman-Davenport test — based on the χ F 2 \chi^2_F χF2
Friedman test — compares the average ranks of k k k algorithms — more powerful than the Friedman test

这里写图片描述
following a F F F distribution with KaTeX parse error: Unexpected character: '' at position 4: k -̲ 1 and KaTeX parse error: Unexpected character: '' at position 5: (k -̲ 1) (N - 1) degrees of freedom

pairwise comparisons — the Wilcoxon test — stronger
family-wise error

The test statistic for comparing the ith and jth classifier

这里写图片描述

z z z — used to find the corresponding probability from the table of normal distribution

The Bonferroni–Dunn test — Holm
Holm’s procedure — more powerful than Bonferroni–Dunn’s


##Evaluation measures

accuracy — the percentage of instances classified correctly
reduction — the percentage of total data removed during the evolution

class-imbalanced problems

这里写图片描述

  1. true positives (TPs)
  2. false positives (FPs)
  3. true negatives (TNs)
  4. false negatives (FNs)

  • the sensitivity (Sn) — S n = T P T P + F N Sn = \frac{TP}{TP+FN} Sn=TP+FNTP
  • the specificity (Sp) — S p = T N T N + F P Sp = \frac{TN}{TN+FP} Sp=TN+FPTN
  • the G - mean measure — G − m e a n = S p ⋅ S n G-mean = \sqrt{Sp \cdot Sn} Gmean=SpSn

the reduction — 1 − n N m M 1 - \frac{n}{N} \frac{m}{M} 1NnMm


##实验结果

regarding the size of the subsets used

  1. 1000 instances and seven features — (1000,7)
  2. 500 instances and nine features — (500,9)
  3. 100 instances and 13 features — (100,13)

cache — 300–400 MB

memory thrashing

这里写图片描述
这里写图片描述

no significant differences among the three configurations for both accuracy and reduction

execution time — remarkable differences

这里写图片描述
这里写图片描述

这里写图片描述

The Iman–Davenport test with a p-value of 0.0000 for both accuracy and reduction — significant differences

Holm’s procedure —

这里写图片描述

the κ \kappa κ-error relative movement diagrams —

这里写图片描述
— the reduction difference — instead of the κ \kappa κ difference value
These diagrams use an arrow to represent the results of two methods applied to the same dataset.
a convenient way of summarizing the results
arrows pointing up-right
arrows pointing down-left

这里写图片描述

这里写图片描述
Regarding time — an approximately linear behavior

Holm test — (15 rounds)

这里写图片描述


###运行时间

the philosophy of divide-and-conquer
bookkeeping

这里写图片描述

the wall-clock time

significantly faster

the speedup of SSIFSM with respect to the standard IS + FSCHC for the parallel and sequential implementations respectively —

这里写图片描述

这里写图片描述

three control experiments —

这里写图片描述

这里写图片描述

  1. a random selection method — [ 5 % , 15 % ] [5\%,15\%] [5%,15%] and [ 15 % , 25 % ] [15\%,25\%] [15%,25%] (instance and features)
  2. IB3 [1] algorithm for instance selection and ReliefF [55] method for feature selection
  3. IB3 [1] algorithm for feature selection and ReliefF [55] method for instance selection

the performance in terms of reduction was similar
a very significant worsening of the accuracy


###Scalability to very large datasets

problems with many instances, many features and both many instances and features

the largest set containing 50 million instances and 800 features

a large imbalance ratio

G-mean

这里写图片描述


#结论

simultaneous instance and feature selection

a bookkeeping mechanism

a voting method

a CHC algorithm

class-imbalanced data

scaled up to problems of very large size

scalability:

  1. instance and feature selection is always performed over small datasets
  2. a bookkeeping approach
  3. only small subsets must be kept in memory

decision trees
support vector machines

这篇关于一种可扩展的同时进化实例和特征选择方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971938

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

springboot security验证码的登录实例

《springbootsecurity验证码的登录实例》:本文主要介绍springbootsecurity验证码的登录实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录前言代码示例引入依赖定义验证码生成器定义获取验证码及认证接口测试获取验证码登录总结前言在spring

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp