漫步数理统计三——概率集合函数(上)

2024-05-08 15:58

本文主要是介绍漫步数理统计三——概率集合函数(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C 表示样本空间,那么事件集应该是什么呢?我们感兴趣的是给事件、事件的补、事件的并或交分配概率,因此我们希望事件集包含这些事件的组合,这样的事件集称为 C 子集的 σ 域,定义如下:

1 ( σ 域)令 B 表示 C 子集的集合,如果

  1. ϕB ( B 不为空);
  2. 如果 CB ,那么 CcB ( B 对补运算封闭);
  3. 如果集合序列 {C1,C2,} B 中,那么 i=1Ci=B ( B 对可数并运算封闭)
    那么我们称 B 是一个 σ 域。

注意由(1)(2)可知, σ 域总是包含 ϕ C ,由(2)(3)并根据德摩根定律可得 σ 域除了对可数并封闭外,还对可数交封闭,这就是我们事件集所需要的。为了避免混淆,注意等价式:令 CC ,那么 C 是一个事件等价于CB。这些表达式我们以后都会用到,接下来给出一些 σ 域的实例:

  1. C 是任意集合, CC ,那么 B={C,Cc,ϕ,C} σ 域;
  2. C 是任意集合, B C 的幂集合,( C 所有子集组成的集)那么 B σ 域;
  3. 假设 D C 子集构成一个非空集合,考虑事件集

    B={E:DEEσ}

    它是包含 D 的最小 σ 域;因此有时也称为 D 生成的 σ 域;

  4. C=R ,其中 R 是所有实数构成的集合,令L R 中所有开区间构成的集合,令

    B0={E:LEEσ}

    这个 σ 域即 B0 经常被称为实轴上的博雷尔(Borel) σ 域。它不仅包含含开区间,还包含实数的闭区间与半开区间,这是一个重要的 σ 域。

现在我们有一个样本空间 C 以及事件集 B ,那么就能定义概率空间的第三个要素,即概率集合函数。为了导出这个概念,我们先考虑相对频率来近似概率。

1 概率的定义由三个公理组成,我们用相对频率的三个直观性质导出来。令 C 是一个事件,假设我们重复进行N试验,那么 C 的相对频率就是fC=C/N,其中 C 表示 N 次试验中C发生的次数,注意 fC0,fC1 ,这就是前两个性质。对于第三个,假设 C1,C2 是不相交事件,那么 fC1C2=fC1+fC2 。这三个相对频率的性质形成了概率的公理,除了第三个是可数并以外。

2 (概率)令 C 是样本空间, B C 上的 σ 域,令 P 是定义在B上的实值函数,如果 P 满足下面三个条件:

  1. 对所有的CB,P(C)0

    • P(C)=1 ;
    • 如果 {Cn} B 中的集合序列,并且对于所有的 mn,CmCn=ϕ ,满足
      P(n=1Cn)=n=1P(Cn)
    • 那么 P 是一个概率集合函数(Probability set function)。

      概率集合函数告诉了我们概率在事件集合B上是如何分布的,在这个意义下我们讲概率分布,我们经常省略掉集合这个词,而是将 P 称为概率函数。

      下面的定理给出概率集合函数的其他性质,每个定理中,P(C)默认取定义在样本空间 C σ B 上的概率集合函数。

      1 对于每个事件 CB,P(C)=1P(Cc)

      我们有 C=CCc,CCc=ϕ ,因此根据定义2中的(2)(3)可得

      1=P(C)+P(Cc)

      即所要证的结论。 ||

      2 空集合的概率是空;即 P(ϕ)=0

      在定理1中,取 C=ϕ 这样的话 Cc=C ,由此可得

      P(ϕ)=1P(C)=11=0

      定理得证。 ||

      3 如果 C1,C2 是满足 C1C2 的事件,那么 P(C1)P(C2)

      C2=C1(Cc1C2),C1(Cc1C2)=ϕ ,那么根据定义2的(3)可得

      P(C2)=P(C1)+P(Cc1C2)

      根据定义2的(1), P(Cc1C2)0 ,因此 P(C2)P(C1) ||

      4 对每个 CB0P(C)1

      因为 ϕCC ,利用定理3可得

      P(ϕ)P(C)P(C)or0P(C)1

      证毕。 ||

      概率定义的(3)说明如果 C1,C2 是不相交的即 C1C2=ϕ ,那么 P(C1C2)=P(C1)+P(C2) 。下面的定理给出了任意两个事件满足的法则。

      5 如果 C1,C2 C 中的事件,那么

      P(C1C2)=P(C1)+P(C2)P(C1C2)

      集合 C1C2,C2 分别可以用不相交集合的并表示出来:

      C1C2=C1(Cc1C2)andC2=(C1C2)(Cc1C2)

      因此根据定理2的(3)可得

      P(C1C2)=P(C1)+P(Cc1C2)

      以及

      P(C2)=P(C1C2)+P(Cc1C2)

      第二个等式求出 P(Cc1C2) ,然后代入第一个等式得

      P(C1C2)=P(C1)+P(C2)P(C1C2)

      证毕。 ||

      2 (容斥公式)很容易得出

      P(C1C2C3)=p1p2+p3

      其中

      p1p2p3=P(C1)+P(C2)+P(C3)=P(C1C2)+P(C1C3)+P(C2C3)=P(C1C2C3)

      我们可以将其推广:

      P(C1C2Ck)=p1p2+p3+(1)k+1pk

      其中 pi 等于所有 i 个集合交的概率之和。当k=3时很明显可知 p1p2p3 ,更一般的 p1p2pk

      p1=P(C1)+P(C2)++P(Ck)P(C1C2Ck)

      这就是布尔不等式。当 k=2 时我们有

      1P(C1C2)=P(C1)+P(C2)P(C1C2)

      这就给出了邦弗朗尼不等式,

      1P(c1C2)=P(C1)+P(C2)P(C1C2)

      这在 P(C1),P(C2) 很大时有用。容斥公式还给出了其他有用的不等式;像

      p1P(C1C2Ck)p1p2

      以及

      p1p2+p3P(C1C2Ck)p1p2+p3p4

      1 C 表示两个掷骰子所得有序对的样本空间,概率集合函数对 C 中的36个点都分配概率为 136 。如果 C1={(1,1),(2,1),(3,1),(4,1),(5,1)},C2={(1,2),(2,2),(3,2)} ,那么 P(C1)=536,P(C2)=336,P(C1C2)=836,P(C1C2)=0 ||

      2 投掷两枚硬币,结果是有序对,那么样本空间可以表示成 C={(H,H),(H,T),(T,H),(T,T)} 。概率集合函数对 C 中每个元素分配概率为 14 ,。 C1={(H,H),(H,T)},C2={(H,H),(T,H)} ,那么 P(C1)=P(C2)=12,P(C1C2)=14 ,利用定理5得 P(C1C2)=12+1214=34 ||

这篇关于漫步数理统计三——概率集合函数(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/970770

相关文章

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五