代码随想录day60 | 动态规划P17 | ● 647. ● 516.● 动态规划总结篇

2024-05-08 06:04

本文主要是介绍代码随想录day60 | 动态规划P17 | ● 647. ● 516.● 动态规划总结篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天 结束动态规划章节 正好是60天 fighting

647. 回文子串  

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

输入:s = "abc"
输出:3
解释:三个回文子串: "a", "b", "c"

示例 2:

输入:s = "aaa"
输出:6
解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"

思路

动态规划

定义:dp[i][j] 代表字符串在区间[i, j]上是不是回文子串 是则true 否则 false 

递推:在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

初始化:全false即可

遍历顺序:注意到 dp[i][j] 在情况三由 其左下角的 dp[i + 1][j - 1]决定 那么遍历要从下往上 从左往右

贪心

首先确定回文串,就是找中心然后向两边扩散看是不是对称的就可以了。

在遍历中心点的时候,要注意中心点有两种情况

一个元素可以作为中心点,两个元素也可以作为中心点。

代码

动态规划

class Solution {public int countSubstrings(String s) {//dp[i][j] 代表 字符串中[i, j]区间的子串是否为回文串boolean [][] dp = new boolean [s.length()][s.length()];int num = 0;for(int i = s.length()-1 ; i >= 0; i--){for(int j = i; j < s.length();j++){if(s.charAt(i) == s.charAt(j)){if(j - i <= 1){//情况一与情况二dp[i][j] = true;num++;}else{//情况三dp[i][j] = dp[i+1][j-1];if(dp[i][j]) num ++;}}else{dp[i][j] = false;}}}return num;}
}

贪心

class Solution {public int countSubstrings(String s) {//确定回文串,就是找中心然后向两边扩散看是不是对称的就可以了。int res = 0;for (int i = 0; i < s.length(); i++) {//遍历每个字符作为中心点res += getNum(s, i, i, s.length());res += getNum(s, i, i + 1, s.length());}return res;}public int getNum(String s, int i, int j, int len) {int res = 0;while (i >= 0 && j < len && s.charAt(i) == s.charAt(j)) {//向两边扩散i--;j++;res++;}return res;}}

516.最长回文子序列

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。

示例 2:

输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。

思路

上一题求的是回文子串,而本题要求的是回文子序列, 要搞清楚这两者之间的区别。

回文子串是要连续的,回文子序列不是连续的! 回文子串,回文子序列都是动态规划经典题目。

定义:dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

递推:

在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

        加入s[j]的回文子序列长度为dp[i + 1][j]。

        加入s[i]的回文子序列长度为dp[i][j - 1]。

        那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

初始化:根据dp定义 单个字符的最长回文子序列长度为1 那么斜向初始化为1

遍历顺序:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 所以dp[i][j] 与 其左下角元素有关

遍历从下到上 从左到右

代码

class Solution {public int longestPalindromeSubseq(String s) {//dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。int [][] dp = new int [s.length()][s.length()];for(int i = 0; i<s.length(); i++){dp[i][i] = 1;}for(int i = s.length()-1; i>=0; i--){
//            System.out.println("i=" + i);//注意这里j初始化为 i + 1 防止出现越界问题for(int j = i + 1; j<s.length(); j++){
//                System.out.println("j=" + j);if(s.charAt(i) == s.charAt(j)){dp[i][j] = dp[i+1][j-1] + 2;}else{dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);}}}return dp[0][s.length()-1];}
}

动态规划总结篇

代码随想录 (programmercarl.com)

这篇关于代码随想录day60 | 动态规划P17 | ● 647. ● 516.● 动态规划总结篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/969510

相关文章

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

C# List.Sort四种重载总结

《C#List.Sort四种重载总结》本文详细分析了C#中List.Sort()方法的四种重载形式及其实现原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录1. Sort方法的四种重载2. 具体使用- List.Sort();- IComparable

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

SpringBoot项目整合Netty启动失败的常见错误总结

《SpringBoot项目整合Netty启动失败的常见错误总结》本文总结了SpringBoot集成Netty时常见的8类问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、端口冲突问题1. Tomcat与Netty端口冲突二、主线程被阻塞问题1. Netty启动阻

MyBatis-Plus使用动态表名分表查询的实现

《MyBatis-Plus使用动态表名分表查询的实现》本文主要介绍了MyBatis-Plus使用动态表名分表查询,主要是动态修改表名的几种常见场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录1. 引入依赖2. myBATis-plus配置3. TenantContext 类:租户上下文

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序