AGI|基于LangChain实现的三种高级RAG检索方法

2024-05-08 05:44

本文主要是介绍AGI|基于LangChain实现的三种高级RAG检索方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

RAG(Retrieval-Augmented Generation)检索增强生成,是现如今基于企业私域知识的问答应用所使用的主流技术之一。相较于重新训练基于私域知识的大模型来说,RAG没有额外的预训练成本,且回答效果与之相当。

但在实际应用场景中,RAG所面临最大的问题是LLM的上下文长度限制。企业私域知识文本的数量十分庞大,不可能将其全部放在模型的prompt中,即使现在各类模型已经将上下文token从年初的2k、4k扩充到了128k、192k,但是这可能也就是一份合同、一份标书的长度。因此,如何减少传递给模型的内容数量且同时提高内容质量,是提升基于RAG的AI应用回答准确度的一个重要方法。

本篇文章将基于LangChain实现三种高级检索方法,句子窗口检索和自动合并检索旨在改善RAG流程的召回过程中存在的信息残缺的问题,而多路召回检索则保证了在多个文档中检索召回的准确性。

二、先验知识

●RAG简要流程

加载文档——切分划片——嵌入为向量表示——存入数据库

向量化问题——向量召回文档——合并放入Prompt——LLM生成答案

三、句子窗口检索

(一)概念

在文档进行切片工作后,文档被分为若干个Langchain自定义的Document对象,该对象有两个属性,一是page_content即该切片的文本内容,二是meta_data即有关该切片的一些信息和可自定义封装进入的信息。

句子窗口检索方法,将每个切片的相邻切片的内容封装在切片的meta_data中。在检索和召回过程时,根据命中文档的meta_data可获得此段落的上下文信息,并将其封装进入命中文档的page_content中。组合完成的文档列表即可作为prompt交付给大模型生成。

在实际问答任务中,我们建议使用切片器将文档切分为较短的分片,或使用依据标点符号进行切分的切片器。保证整片文档拥有较细的颗粒度。同时在封装和召回阶段,适当扩大窗口大小,保证召回段落的完整性。

(二)BERT

(1)元数据封装

def metadata_format(self, ordered_text, **kwargs):
count = kwargs.get("split_count", 1)
fori, documentinenumerate(ordered_text):
ifi > 0:
document.metadata['previous_page'] = ordered_text[i-count].page_content
else:
document.metadata['previous_page'] = ''ifi < len(ordered_text) - 1:
document.metadata['next_page'] = ordered_text[i+count].page_content
else:
document.metadata['next_page'] = ''
returnordered_text

(2)数据重构

def search_and_format(self, databases, query, **kwargs):
top_documents = []
fordb in databases:
top_documents.append(db.similarity_search_with_score(query))
docs = []
fordoc, _ in top_documents:
doc.page_content = doc.metadata.get("previous_page") + doc.page_content + doc.metadata.get("next_page")
docs.append(doc)
returndocs

(3)调用示例伪代码

#load document
......#split
......
#use smartvision sdk to format
sentence_window_retrival = SentenceWindow()
formatted_documents = sentence_window_retrival.metadata_format(documents, split_count=2)#embedding 
......#load inlocalvector db
......#use smartvision sdk to dosearch and multiple recall
databases = [db]
query = "烟草专卖品的运输"
top_documents = sentence_window_retrival.search_and_format(databases, query)
print(top_documents)

四、自动合并检索

(一)概念

自动合并检索方法,实现方法源自Llamaindex所封装的自动合并检索,但RAG全流程需要制定一套准确的规范,因此在用户文档完成读取和切片工作后,所得到的Langchain格式的Document对象需转化为Llamaindex定义的Document对象,便可通过Llamaindex的自定义算法自动划分整个切片列表的子节点和父节点,最后鉴于规范再重新转化为Langchain格式的Document对象,并将父节点信息、深度信息等封装进每个节点。

在检索阶段,召回最相关的若干个节点,遍历这些节点和附加信息,如若超过K个节点同时属于同一个节点(这里的K为用户自定义阈值,通常为一个节点所有子节点的半数)则执行合并该父节点下属所有子节点,即返回整个父节点内容。这使我们能够将可能不同的较小上下文合并到一个可能有助于综合的更大上下文中。

(二)代码实现和调用

(1)元数据封装

defauto_merge_format(documents, **kwargs):
ifdocuments isNone:
raiseValueError('documents is required')
formatted_documents = []
doc_text = "\n\n".join([d.page_content ford indocuments])
docs = [Document(text=doc_text)]
node_parser = HierarchicalNodeParser.from_defaults(chunk_sizes=kwargs.get("pc_chunk_size", [2048, 512, 128]),chunk_overlap=kwargs.get("pc_chunk_overlap", 10))
nodes = node_parser.get_nodes_from_documents(docs)
leaf_nodes = get_leaf_nodes(nodes)
root_nodes = get_root_nodes(nodes)
middle_nodes = get_middle_node(nodes, leaf_nodes, root_nodes)
root_context_dict = {}
forroot_node innodes:
root_context_dict[root_node.node_id] = root_node.get_content()fornode innodes:
ifnode.parent_node:
node_id = node.node_id
root_node_id = node.parent_node.node_id
root_node_content = root_context_dict.get(node.parent_node.node_id)
root_node_child_count = 0
forparent_node inroot_nodes + middle_nodes:
ifparent_node.node_id == node.parent_node.node_id:
root_node_child_count = len(parent_node.child_nodes)
break
depth = 2ifnode inmiddle_nodes else3
child_count = len(node.child_nodes) ifnode.child_nodes isnotNoneelse0
document = langchain.schema.Document(page_content=node.get_content(),metadata={"node_id": node_id, "root_node_id": root_node_id, "root_node_content": root_node_content, "root_node_child_count": root_node_child_count, "depth": depth, "child_count": child_count})
formatted_documents.append(document)
returnformatted_documents

(2)数据重构

defsearch_and_format(self, databases, query, **kwargs):
top_documents = []
fordb indatabases:
top_document = db.similarity_search_with_score(query)
top_documents.append(top_document)
leaf_nodes = [doc fordoc, _ intop_documents]
returndo_merge(leaf_nodes, **kwargs)defgroup_nodes_by_depth(nodes, depth):
return[node fornode innodes ifnode.metadata.get("depth") == depth]defprocess_group(nodes, threshold):
grouped_by_root_id = {}
fornode innodes:
root_id = node.metadata.get("root_node_id")
grouped_by_root_id.setdefault(root_id, []).append(node)merge_context = []
forgroup ingrouped_by_root_id.values():
node_count = len(group)
child_count = group[0].metadata.get("root_node_child_count")
ifnode_count / child_count >= threshold:
merge_context.append(langchain.schema.Document(
page_content=group[0].metadata.get("root_node_content")
))
else:
fordocument ingroup:
merge_context.append(document)
returnmerge_contextdefdo_merge(nodes, **kwargs)-> List[langchain.schema.Document]:
threshold = kwargs.get("threshold", 0.5)
leaf_nodes = group_nodes_by_depth(nodes, 3)
middle_nodes = group_nodes_by_depth(nodes, 2)
leaf_merge_context = process_group(leaf_nodes, threshold)
middle_merge_context = process_group(middle_nodes, threshold)
merge_content = leaf_merge_context + middle_merge_context
returnmerge_contentdefget_middle_node(nodes, leaf_nodes, root_nodes):
middle_node = []
fornode innodes:
ifnode notinleaf_nodes andnode notinroot_nodes:
middle_node.append(node)
returnmiddle_node

(3)调用示例伪代码

#load document
......#split
......#use smartvision sdk to format
auto_merge_retrival = AutoMergeRetrieval()
formatted_documents = auto_merge_retrival.metadata_format(documents,
pc_chunk_size=[1024, 128, 32],
pc_chunk_overlap=4)
#embedding 
......#load inlocalvector db
......#use smartvision sdk to dosearch and multiple recall
top_documents = auto_merge_retrival.search_and_format(databases, query, threshold=0.5)
print(top_documents)

五、多路召回检索

(一)概念

多路召回检索方法,在元数据封装环节并未做任何操作,而在检索阶段他允许用户上传多个数据集或不同类型的向量数据库作为检索对象,以适应用户私域知识库文档类型不同,文档数量庞大的问题。从多个数据源检索得到文档列表,而后通过rerank模型对文档与问题的相关性进行评分,筛选出大于一定分值的文档,组合成为prompt。

由此可见,多路召回检索在数据源广而杂的情况下,富有更好的效果。此外,rerank模型虽能进行再次的重排以提高准确性,但是在牺牲速度和效率的前提下进行的,因此需充分考虑这个问题。

(二)代码实现

(1)元数据封装

defmetadata_format(self, ordered_text, **kwargs):
"""
默认rag,不做任何处理
"""
returnordered_text

(2)数据重构

defsearch_and_format(self, databases, query, **kwargs):
top_documents = []
result_data = []
fordb indatabases:
top_document = db.similarity_search_with_score(query)
top_documents.append(top_document)
pairs = [[query, item.page_content] foritem intop_documents]
withtorch.no_grad():
rerank_tokenizer = AutoTokenizer.from_pretrained(RERANK_FILE_PATH)
inputs = rerank_tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
rerank_model = AutoModelForSequenceClassification.from_pretrained(RERANK_FILE_PATH)
scores = rerank_model(**inputs, return_dict=True).logits.view(-1, ).float()
fori, score inenumerate(scores):
data = {
"text": top_documents[i].page_content,
"score": float(score)
}
result_data.append(data)
returnresult_data

六、结语

本文提供的三种高级RAG检索方法,但仅改善了流程中检索召回环节的信息残缺问题,实质上RAG全流程均存在各种优化方法,但最有效的方法仍是改进或提供新的召回方式。

总结以上三种方法,均需要重点注意切片器的选用并控制切片大小,过大导致上下文长度过长,且有研究表明过长的prompt易使大模型忽略的中间部分的信息。过短则导致关键信息残缺,无法为大模型提供有效的上下文。因此开发者需根据文档类型和结构,谨慎选择并适当调节优化。

神州数码集团的神州问学平台不仅提供了本文所述的三种高级检索方法的SDK,而且我们的开发团队正不断探索和研发新的、更高效的检索技术。我们致力于满足客户对于多样化私域知识库结构的需求,以实现更精准、更全面的搜索体验。同时,我们也欢迎您体验平台并提供宝贵意见。

作者:孙泽文| 神州数码云基地

更多AI小知识欢迎关注“神州数码云基地”公众号,回复“AI与数字化转型”进入社群交流

版权声明:文章由神州数码武汉云基地团队实践整理输出,转载请注明出处。

这篇关于AGI|基于LangChain实现的三种高级RAG检索方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/969471

相关文章

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in