05-07 周二 Python使用并行程序取代串行加速运行,样例程序演示

本文主要是介绍05-07 周二 Python使用并行程序取代串行加速运行,样例程序演示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

在进行FastBuild优化的时候,需要串行的获取需要的组件的特征,之前是串行进行的,但是由于之前的设计存在问题,因此,总是很低效,主要是如下的原因:

  • 镜像需要先下载,然后检测运行环境和检查镜像元数据
  • 有些镜像比较大,下载很花时间,前端的请求,大概是15秒,之后就终止了。
  • 检查镜像环境的时候,之前是串行进行的

博客 python concurrent.futures 模块线程处理详解介绍的不错

问题代码

    def get_image_descriptor(self) -> ImageDescriptor:"""获取镜像描述信息:return:"""descriptor = ImageDescriptor(self.image_name)descriptor.kernel = self.get_kernel_artifact()descriptor.os = self.get_os_artifact()descriptor.package_manager = self.get_package_manager_artifact()descriptor.pip = self.get_pip_artifact()descriptor.conda = self.get_conda_artifact()descriptor.python = self.get_python_artifact()descriptor.image_id = self.image_iddescriptor.sshd = self.get_sshd_artifact()descriptor.jupyter_lab = self.get_jupyter_lab_artifact()return descriptor

优化如下:

    def get_image_descriptor(self) -> ImageDescriptor:"""获取镜像描述信息:return:"""descriptor = ImageDescriptor(self.image_name)descriptor.image_id = self.image_idresult = self.get_artifact_result_parallel()descriptor.kernel = result["get_kernel_artifact"]descriptor.os = result["get_os_artifact"]descriptor.package_manager = result["get_package_manager_artifact"]descriptor.pip = result["get_pip_artifact"]descriptor.conda = result["get_conda_artifact"]descriptor.python = result["get_python_artifact"]descriptor.sshd = result["get_sshd_artifact"]descriptor.jupyter_lab = result["get_jupyter_lab_artifact"]return descriptordef get_all_artifact_funcs(self) -> List:return [self.get_kernel_artifact, self.get_os_artifact, self.get_package_manager_artifact,self.get_pip_artifact, self.get_conda_artifact, self.get_python_artifact,self.get_sshd_artifact, self.get_jupyter_lab_artifact]def get_artifact_result_parallel(self):# 使用线程池执行所有的artifact获取函数with concurrent.futures.ThreadPoolExecutor() as executor:# 执行所有函数并将结果映射到一个字典中results = {func.__name__: executor.submit(func) for func in self.get_all_artifact_funcs()}# 等待所有任务完成并更新descriptorres = {}for name, future in results.items():res[name] = future.result()return res

Python代码演示并行和串行的影响

#!/usr/bin/env python
# -*- coding:UTF-8 -*-"""
@author: songquanheng
@email: wannachan@outlook.com
@time: 2024年4月29日14:12:03
@desc: 测试并行函数
"""
import concurrent
from time import sleep
import time
from typing import Listdef cost_time(func):def fun(*args, **kwargs):t = time.perf_counter()result = func(*args, **kwargs)print(f'func {func.__name__} cost time:{time.perf_counter() - t:.8f} s')return resultreturn fundef get_ret_value():"""这是一个需要花费1秒的函数:return:"""sleep(1)return 12def get_all_artifact_funcs() -> List:return [get_ret_value, get_ret_value, get_ret_value,get_ret_value, get_ret_value, get_ret_value,get_ret_value, get_ret_value]@cost_time
def serial():start = time.perf_counter()for func in get_all_artifact_funcs():print(func())print(f'serial coast:{time.perf_counter() - start:.8f}s')@cost_time
def parallel():start = time.perf_counter()with concurrent.futures.ThreadPoolExecutor() as executor:# 执行所有函数并将结果映射到一个字典中results = {func.__name__: executor.submit(func) for func in get_all_artifact_funcs()}# 等待所有任务完成并更新descriptorres = {}for name, future in results.items():res[name] = future.result()print(res)print(f'parallel coast:{time.perf_counter() - start:.8f}s')def get_artifact_result_parallel(self):with concurrent.futures.ThreadPoolExecutor() as executor:# 执行所有函数并将结果映射到一个字典中results = {func.__name__: executor.submit(func) for func in self.get_all_artifact_funcs()}# 等待所有任务完成并更新descriptorres = {}for name, future in results.items():res[name] = future.result()return resif __name__ == '__main__':serial()parallel()

这篇关于05-07 周二 Python使用并行程序取代串行加速运行,样例程序演示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968971

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma