通过三角形相似原理实现单目测距

2024-05-07 23:04

本文主要是介绍通过三角形相似原理实现单目测距,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      根据三角形相似原理计算相机焦距,公式为:F = (P * D) / W

      其中:

      F: 待求的相机的焦距

      P: 图像中目标的宽度,单位像素

      D: 真实目标与相机的距离,单位厘米

      W: 真实目标的宽度,单位厘米

      计算焦距前,首先要有一幅带目标的图像,这里以人脸为例,记下采集此幅图像时,相机与人脸的实际距离D,真实人脸的宽度W,通过HaarCascade计算人脸在图像中的宽度P。

      获取相机焦距后,再根据公式:D' = (F * W) / P 即可计算出此目标与相机的实时距离。

      测试代码如下:

namespace {bool calculate_image_face_width(cv::CascadeClassifier& face_cascade, const char* image_name, int& P)
{cv::Mat bgr = cv::imread(image_name, 1);if (!bgr.data) {std::cerr << "Error: fail to imread: " << image_name << "\n";return false;}cv::Mat gray;cv::cvtColor(bgr, gray, cv::COLOR_BGR2GRAY);cv::equalizeHist(gray, gray);std::vector<cv::Rect> faces;face_cascade.detectMultiScale(gray, faces);//for (auto i = 0; i < faces.size(); ++i)//	cv::rectangle(bgr, faces[i], cv::Scalar(255, 0, 0), 1);//cv::imwrite("../../../data/result.jpg", bgr);if (faces.size() != 1) {std::cerr << "Error: faces size: " << faces.size() << "\n";return false;}P = faces[0].width;return true;
}inline int  calculate_focal_length(int P, int D, int W)
{return ((P * D) / W);
}inline int calculate_distance(int F, int W, int P)
{return ((F * W) / P);
}} // namespaceint test_monocular_ranging_face_triangle_similarity()
{
#ifdef _MSC_VERconstexpr char* file_name{ "../../../data/haarcascade_frontalface_alt.xml" };constexpr char* image_name{ "../../../data/images/face/1.jpg" };
#elseconstexpr char* file_name{ "data/haarcascade_frontalface_alt.xml" };constexpr char* image_name{ "data/images/face/1.jpg" };
#endifcv::CascadeClassifier face_cascade;if (!face_cascade.load(file_name)) {std::cerr << "Error: fail to load file:" << file_name << "\n";return -1;}auto P{ 0 };if (!calculate_image_face_width(face_cascade, image_name, P)) {std::cerr << "Error: fail to get_image_face_width\n";return -1;}std::cout << "the width of the face in the image: " << P << " pixels\n";constexpr int D{ 60 }, W{ 18 }; // cmconst auto F = calculate_focal_length(P, D, W);std::cout << "focal length: " << F << "\n";cv::VideoCapture cap(1); // usb cameraif (!cap.isOpened()) {std::cerr << "Error: fail to open capture\n";return -1;}cv::Mat gray;constexpr char* winn_ame{ "Monocular Ranging" };cv::namedWindow(winn_ame, 1);const std::string text{ "Distance = " };for (;;) {cv::Mat frame;cap >> frame; // get a new frame from cameracv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);cv::equalizeHist(gray, gray);std::vector<cv::Rect> faces;face_cascade.detectMultiScale(gray, faces);for (auto i = 0; i < faces.size(); ++i) {cv::rectangle(frame, faces[i], cv::Scalar(255,0,0), 1);P = faces[i].width;auto D2 = calculate_distance(F, W, P) / 100.; // mauto tmp = std::to_string(D2);auto pos = tmp.find(".");if (pos != std::string::npos)tmp = tmp.substr(0, pos+3);std::string content = text + tmp + " m";cv::putText(frame, content, cv::Point(faces[i].x, faces[i].y - 25), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 0, 255), 1);}cv::imshow(winn_ame, frame);if (cv::waitKey(30) >= 0)break;}return 0;
}

      说明

      (1).通过OpenCV的cv::CascadeClassifier检测人脸;

      (2).函数calculate_image_face_width用于计算人脸在图像中的宽度;

      (3).函数calculate_focal_length用于计算相机焦距;

      (4).函数calculate_distance用于计算人脸与相机的距离。

      执行结果截图如下所示:原始图像来自于网络

      GitHub:https://github.com/fengbingchun/NN_Test

这篇关于通过三角形相似原理实现单目测距的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968640

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义