Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分

2024-05-07 18:44

本文主要是介绍Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 🎯资产价格动态数学随机模型:🖊价格几何布朗运动过程积分 | 🖊布朗运动和几何布朗运动随时间概率密度 | 🖊几何布朗运动离散过程 | 🖊电动车历史股票价值及预期。
  2. 🎯金融衍生品估值偏微分方程:🖊期权合约 | 🖊计算看涨期权期权面,显示对冲参数及预期价格 | 🖊计算看跌期权的期权面 | 🖊对冲看涨期权投资组合 | 🖊再平衡频率对投资组合方差的影响。
  3. 🎯期权价格与隐含概率密度函数关系模型:🖊看涨期权隐含波动率 | 🖊看涨期权敏感度值曲面 | 🖊隐含波动率曲面 | 🖊看涨期权价值函数偏微分变化趋势 | 🖊看涨期权价格执行价格对比 | 🖊哈根隐含波动率参数化下的不同隐含波动率形状 | 🖊外汇市场报价数据插值 | 🖊局部波动模型模拟。
  4. 🎯价格泊松过程中偏积分微分方程:🖊价格跳跃扩散的蒙特卡罗路径和补偿泊松过程 | 🖊默顿模型,跳跃扩散过程 | 🖊跳跃扩散过程概率密度三维分布和二维动态 | 🖊默顿跳跃扩散模型对隐含波动率影响 | 🖊对冲看涨期权价格波动 | 🖊不同对冲频率对损益方差的影响。
  5. 🎯傅立叶余弦级数和风险中性估值期权定价方法 | 🎯多维期权定价和风险中性措施
  6. 🎯C++和Python计算金融数学方程算法模型

🍇Python风险中性资产定价

β = 1 / ( 1 + ρ ) \beta=1 /(1+\rho) β=1/(1+ρ) 为跨期贴现因子,其中 ρ \rho ρ 是主体对未来贴现的利率。为一单位除息资产定价的基本风险中性资产定价方程为
p t = β E t [ d t + 1 + p t + 1 ] p_t=\beta E _t\left[d_{t+1}+p_{t+1}\right] pt=βEt[dt+1+pt+1]
这里 E t [ y ] E _t[y] Et[y] 表示 y y y 的最佳预测,以时间 t t t 可用的信息为条件。

最简单的情况是恒定、非随机股息流的风险中性价格 d t = d > 0 d_t=d>0 dt=d>0。从上式中删除期望并向前迭代得出,
p t = β ( d + p t + 1 ) = β ( d + β ( d + p t + 2 ) ) ⋮ = β ( d + β d + β 2 d + ⋯ + β k − 2 d + β k − 1 p t + k ) \begin{aligned} p_t & =\beta\left(d+p_{t+1}\right) \\ & =\beta\left(d+\beta\left(d+p_{t+2}\right)\right) \\ & \vdots \\ & =\beta\left(d+\beta d+\beta^2 d+\cdots+\beta^{k-2} d+\beta^{k-1} p_{t+k}\right) \end{aligned} pt=β(d+pt+1)=β(d+β(d+pt+2))=β(d+βd+β2d++βk2d+βk1pt+k)
如果 lim ⁡ k → + ∞ β k − 1 p t + k = 0 \lim _{k \rightarrow+\infty} \beta^{k-1} p_{t+k}=0 limk+βk1pt+k=0,该序列收敛为
p ˉ : = β d 1 − β \bar{p}:=\frac{\beta d}{1-\beta} pˉ:=1ββd
这是股息不变情况下的均衡价格。

考虑一个增长的非随机股息过程 d t + 1 = g d t d_{t+1}=g d_t dt+1=gdt,其中 0 < g β < 1 0<g \beta<1 0<gβ<1。虽然当股息随着时间的推移而增长时,价格通常不会保持不变,但价格股息率却可以。

如果我们猜到这一点,将 v t = v v_t=v vt=v 代入下式以及我们的其他假设,我们得到 v = β g ( 1 + v ) v=\beta g(1+v) v=βg(1+v)​。
v t = E t [ m t + 1 d t + 1 d t ( 1 + v t + 1 ) ] v_t= E _t\left[m_{t+1} \frac{d_{t+1}}{d_t}\left(1+v_{t+1}\right)\right] vt=Et[mt+1dtdt+1(1+vt+1)]
由于 β g < 1 \beta g<1 βg<1,我们有唯一的正解:
v = β g 1 − β g v=\frac{\beta g}{1-\beta g} v=1βgβg
价格为:
p t = β g 1 − β g d t p_t=\frac{\beta g}{1-\beta g} d_t pt=1βgβgdt
在这个例子中,如果我们采用 g = 1 + κ g=1+\kappa g=1+κ 并让 ρ : = 1 / β − 1 \rho:=1 / \beta-1 ρ:=1/β1,那么价格就变成
p t = 1 + κ ρ − κ d t p_t=\frac{1+\kappa}{\rho-\kappa} d_t pt=ρκ1+κdt
这就是所谓的戈登公式。

代码实现一个著名的定价模型:

class PricingModel:def __init__(self, β=0.96, mc=None, γ=2.0, g=np.exp):self.β, self.γ = β, γself.g = g# A default process for the Markov chainif mc is None:self.ρ = 0.9self.σ = 0.02self.mc = qe.tauchen(n, self.ρ, self.σ)else:self.mc = mcself.n = self.mc.P.shape[0]def test_stability(self, Q):sr = np.max(np.abs(eigvals(Q)))if not sr < 1 / self.β:msg = f"Spectral radius condition failed with radius = {sr}"raise ValueError(msg)def tree_price(ap):# Simplify names, set up matricesβ, γ, P, y = ap.β, ap.γ, ap.mc.P, ap.mc.state_valuesJ = P * ap.g(y)**(1 - γ)# Make sure that a unique solution existsap.test_stability(J)# Compute vI = np.identity(ap.n)Ones = np.ones(ap.n)v = solve(I - β * J, β * J @ Ones)return v

这是 v v v 作为 γ \gamma γ 几个值的状态函数的图,具有正相关的马尔可夫过程和 g ( x ) = exp ⁡ ( x ) g(x)=\exp (x) g(x)=exp(x)

γs = [1.2, 1.4, 1.6, 1.8, 2.0]
ap = AssetPriceModel()
states = ap.mc.state_valuesfig, ax = plt.subplots()for γ in γs:ap.γ = γv = tree_price(ap)ax.plot(states, v, lw=2, alpha=0.6, label=rf"$\gamma = {γ}$")ax.set_title('Price-dividend ratio as a function of the state')
ax.set_ylabel("price-dividend ratio")
ax.set_xlabel("state")
ax.legend(loc='upper right')
plt.show()

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968083

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as