Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分

2024-05-07 18:44

本文主要是介绍Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 🎯资产价格动态数学随机模型:🖊价格几何布朗运动过程积分 | 🖊布朗运动和几何布朗运动随时间概率密度 | 🖊几何布朗运动离散过程 | 🖊电动车历史股票价值及预期。
  2. 🎯金融衍生品估值偏微分方程:🖊期权合约 | 🖊计算看涨期权期权面,显示对冲参数及预期价格 | 🖊计算看跌期权的期权面 | 🖊对冲看涨期权投资组合 | 🖊再平衡频率对投资组合方差的影响。
  3. 🎯期权价格与隐含概率密度函数关系模型:🖊看涨期权隐含波动率 | 🖊看涨期权敏感度值曲面 | 🖊隐含波动率曲面 | 🖊看涨期权价值函数偏微分变化趋势 | 🖊看涨期权价格执行价格对比 | 🖊哈根隐含波动率参数化下的不同隐含波动率形状 | 🖊外汇市场报价数据插值 | 🖊局部波动模型模拟。
  4. 🎯价格泊松过程中偏积分微分方程:🖊价格跳跃扩散的蒙特卡罗路径和补偿泊松过程 | 🖊默顿模型,跳跃扩散过程 | 🖊跳跃扩散过程概率密度三维分布和二维动态 | 🖊默顿跳跃扩散模型对隐含波动率影响 | 🖊对冲看涨期权价格波动 | 🖊不同对冲频率对损益方差的影响。
  5. 🎯傅立叶余弦级数和风险中性估值期权定价方法 | 🎯多维期权定价和风险中性措施
  6. 🎯C++和Python计算金融数学方程算法模型

🍇Python风险中性资产定价

β = 1 / ( 1 + ρ ) \beta=1 /(1+\rho) β=1/(1+ρ) 为跨期贴现因子,其中 ρ \rho ρ 是主体对未来贴现的利率。为一单位除息资产定价的基本风险中性资产定价方程为
p t = β E t [ d t + 1 + p t + 1 ] p_t=\beta E _t\left[d_{t+1}+p_{t+1}\right] pt=βEt[dt+1+pt+1]
这里 E t [ y ] E _t[y] Et[y] 表示 y y y 的最佳预测,以时间 t t t 可用的信息为条件。

最简单的情况是恒定、非随机股息流的风险中性价格 d t = d > 0 d_t=d>0 dt=d>0。从上式中删除期望并向前迭代得出,
p t = β ( d + p t + 1 ) = β ( d + β ( d + p t + 2 ) ) ⋮ = β ( d + β d + β 2 d + ⋯ + β k − 2 d + β k − 1 p t + k ) \begin{aligned} p_t & =\beta\left(d+p_{t+1}\right) \\ & =\beta\left(d+\beta\left(d+p_{t+2}\right)\right) \\ & \vdots \\ & =\beta\left(d+\beta d+\beta^2 d+\cdots+\beta^{k-2} d+\beta^{k-1} p_{t+k}\right) \end{aligned} pt=β(d+pt+1)=β(d+β(d+pt+2))=β(d+βd+β2d++βk2d+βk1pt+k)
如果 lim ⁡ k → + ∞ β k − 1 p t + k = 0 \lim _{k \rightarrow+\infty} \beta^{k-1} p_{t+k}=0 limk+βk1pt+k=0,该序列收敛为
p ˉ : = β d 1 − β \bar{p}:=\frac{\beta d}{1-\beta} pˉ:=1ββd
这是股息不变情况下的均衡价格。

考虑一个增长的非随机股息过程 d t + 1 = g d t d_{t+1}=g d_t dt+1=gdt,其中 0 < g β < 1 0<g \beta<1 0<gβ<1。虽然当股息随着时间的推移而增长时,价格通常不会保持不变,但价格股息率却可以。

如果我们猜到这一点,将 v t = v v_t=v vt=v 代入下式以及我们的其他假设,我们得到 v = β g ( 1 + v ) v=\beta g(1+v) v=βg(1+v)​。
v t = E t [ m t + 1 d t + 1 d t ( 1 + v t + 1 ) ] v_t= E _t\left[m_{t+1} \frac{d_{t+1}}{d_t}\left(1+v_{t+1}\right)\right] vt=Et[mt+1dtdt+1(1+vt+1)]
由于 β g < 1 \beta g<1 βg<1,我们有唯一的正解:
v = β g 1 − β g v=\frac{\beta g}{1-\beta g} v=1βgβg
价格为:
p t = β g 1 − β g d t p_t=\frac{\beta g}{1-\beta g} d_t pt=1βgβgdt
在这个例子中,如果我们采用 g = 1 + κ g=1+\kappa g=1+κ 并让 ρ : = 1 / β − 1 \rho:=1 / \beta-1 ρ:=1/β1,那么价格就变成
p t = 1 + κ ρ − κ d t p_t=\frac{1+\kappa}{\rho-\kappa} d_t pt=ρκ1+κdt
这就是所谓的戈登公式。

代码实现一个著名的定价模型:

class PricingModel:def __init__(self, β=0.96, mc=None, γ=2.0, g=np.exp):self.β, self.γ = β, γself.g = g# A default process for the Markov chainif mc is None:self.ρ = 0.9self.σ = 0.02self.mc = qe.tauchen(n, self.ρ, self.σ)else:self.mc = mcself.n = self.mc.P.shape[0]def test_stability(self, Q):sr = np.max(np.abs(eigvals(Q)))if not sr < 1 / self.β:msg = f"Spectral radius condition failed with radius = {sr}"raise ValueError(msg)def tree_price(ap):# Simplify names, set up matricesβ, γ, P, y = ap.β, ap.γ, ap.mc.P, ap.mc.state_valuesJ = P * ap.g(y)**(1 - γ)# Make sure that a unique solution existsap.test_stability(J)# Compute vI = np.identity(ap.n)Ones = np.ones(ap.n)v = solve(I - β * J, β * J @ Ones)return v

这是 v v v 作为 γ \gamma γ 几个值的状态函数的图,具有正相关的马尔可夫过程和 g ( x ) = exp ⁡ ( x ) g(x)=\exp (x) g(x)=exp(x)

γs = [1.2, 1.4, 1.6, 1.8, 2.0]
ap = AssetPriceModel()
states = ap.mc.state_valuesfig, ax = plt.subplots()for γ in γs:ap.γ = γv = tree_price(ap)ax.plot(states, v, lw=2, alpha=0.6, label=rf"$\gamma = {γ}$")ax.set_title('Price-dividend ratio as a function of the state')
ax.set_ylabel("price-dividend ratio")
ax.set_xlabel("state")
ax.legend(loc='upper right')
plt.show()

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968083

相关文章

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求