Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分

2024-05-07 18:44

本文主要是介绍Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 🎯资产价格动态数学随机模型:🖊价格几何布朗运动过程积分 | 🖊布朗运动和几何布朗运动随时间概率密度 | 🖊几何布朗运动离散过程 | 🖊电动车历史股票价值及预期。
  2. 🎯金融衍生品估值偏微分方程:🖊期权合约 | 🖊计算看涨期权期权面,显示对冲参数及预期价格 | 🖊计算看跌期权的期权面 | 🖊对冲看涨期权投资组合 | 🖊再平衡频率对投资组合方差的影响。
  3. 🎯期权价格与隐含概率密度函数关系模型:🖊看涨期权隐含波动率 | 🖊看涨期权敏感度值曲面 | 🖊隐含波动率曲面 | 🖊看涨期权价值函数偏微分变化趋势 | 🖊看涨期权价格执行价格对比 | 🖊哈根隐含波动率参数化下的不同隐含波动率形状 | 🖊外汇市场报价数据插值 | 🖊局部波动模型模拟。
  4. 🎯价格泊松过程中偏积分微分方程:🖊价格跳跃扩散的蒙特卡罗路径和补偿泊松过程 | 🖊默顿模型,跳跃扩散过程 | 🖊跳跃扩散过程概率密度三维分布和二维动态 | 🖊默顿跳跃扩散模型对隐含波动率影响 | 🖊对冲看涨期权价格波动 | 🖊不同对冲频率对损益方差的影响。
  5. 🎯傅立叶余弦级数和风险中性估值期权定价方法 | 🎯多维期权定价和风险中性措施
  6. 🎯C++和Python计算金融数学方程算法模型

🍇Python风险中性资产定价

β = 1 / ( 1 + ρ ) \beta=1 /(1+\rho) β=1/(1+ρ) 为跨期贴现因子,其中 ρ \rho ρ 是主体对未来贴现的利率。为一单位除息资产定价的基本风险中性资产定价方程为
p t = β E t [ d t + 1 + p t + 1 ] p_t=\beta E _t\left[d_{t+1}+p_{t+1}\right] pt=βEt[dt+1+pt+1]
这里 E t [ y ] E _t[y] Et[y] 表示 y y y 的最佳预测,以时间 t t t 可用的信息为条件。

最简单的情况是恒定、非随机股息流的风险中性价格 d t = d > 0 d_t=d>0 dt=d>0。从上式中删除期望并向前迭代得出,
p t = β ( d + p t + 1 ) = β ( d + β ( d + p t + 2 ) ) ⋮ = β ( d + β d + β 2 d + ⋯ + β k − 2 d + β k − 1 p t + k ) \begin{aligned} p_t & =\beta\left(d+p_{t+1}\right) \\ & =\beta\left(d+\beta\left(d+p_{t+2}\right)\right) \\ & \vdots \\ & =\beta\left(d+\beta d+\beta^2 d+\cdots+\beta^{k-2} d+\beta^{k-1} p_{t+k}\right) \end{aligned} pt=β(d+pt+1)=β(d+β(d+pt+2))=β(d+βd+β2d++βk2d+βk1pt+k)
如果 lim ⁡ k → + ∞ β k − 1 p t + k = 0 \lim _{k \rightarrow+\infty} \beta^{k-1} p_{t+k}=0 limk+βk1pt+k=0,该序列收敛为
p ˉ : = β d 1 − β \bar{p}:=\frac{\beta d}{1-\beta} pˉ:=1ββd
这是股息不变情况下的均衡价格。

考虑一个增长的非随机股息过程 d t + 1 = g d t d_{t+1}=g d_t dt+1=gdt,其中 0 < g β < 1 0<g \beta<1 0<gβ<1。虽然当股息随着时间的推移而增长时,价格通常不会保持不变,但价格股息率却可以。

如果我们猜到这一点,将 v t = v v_t=v vt=v 代入下式以及我们的其他假设,我们得到 v = β g ( 1 + v ) v=\beta g(1+v) v=βg(1+v)​。
v t = E t [ m t + 1 d t + 1 d t ( 1 + v t + 1 ) ] v_t= E _t\left[m_{t+1} \frac{d_{t+1}}{d_t}\left(1+v_{t+1}\right)\right] vt=Et[mt+1dtdt+1(1+vt+1)]
由于 β g < 1 \beta g<1 βg<1,我们有唯一的正解:
v = β g 1 − β g v=\frac{\beta g}{1-\beta g} v=1βgβg
价格为:
p t = β g 1 − β g d t p_t=\frac{\beta g}{1-\beta g} d_t pt=1βgβgdt
在这个例子中,如果我们采用 g = 1 + κ g=1+\kappa g=1+κ 并让 ρ : = 1 / β − 1 \rho:=1 / \beta-1 ρ:=1/β1,那么价格就变成
p t = 1 + κ ρ − κ d t p_t=\frac{1+\kappa}{\rho-\kappa} d_t pt=ρκ1+κdt
这就是所谓的戈登公式。

代码实现一个著名的定价模型:

class PricingModel:def __init__(self, β=0.96, mc=None, γ=2.0, g=np.exp):self.β, self.γ = β, γself.g = g# A default process for the Markov chainif mc is None:self.ρ = 0.9self.σ = 0.02self.mc = qe.tauchen(n, self.ρ, self.σ)else:self.mc = mcself.n = self.mc.P.shape[0]def test_stability(self, Q):sr = np.max(np.abs(eigvals(Q)))if not sr < 1 / self.β:msg = f"Spectral radius condition failed with radius = {sr}"raise ValueError(msg)def tree_price(ap):# Simplify names, set up matricesβ, γ, P, y = ap.β, ap.γ, ap.mc.P, ap.mc.state_valuesJ = P * ap.g(y)**(1 - γ)# Make sure that a unique solution existsap.test_stability(J)# Compute vI = np.identity(ap.n)Ones = np.ones(ap.n)v = solve(I - β * J, β * J @ Ones)return v

这是 v v v 作为 γ \gamma γ 几个值的状态函数的图,具有正相关的马尔可夫过程和 g ( x ) = exp ⁡ ( x ) g(x)=\exp (x) g(x)=exp(x)

γs = [1.2, 1.4, 1.6, 1.8, 2.0]
ap = AssetPriceModel()
states = ap.mc.state_valuesfig, ax = plt.subplots()for γ in γs:ap.γ = γv = tree_price(ap)ax.plot(states, v, lw=2, alpha=0.6, label=rf"$\gamma = {γ}$")ax.set_title('Price-dividend ratio as a function of the state')
ax.set_ylabel("price-dividend ratio")
ax.set_xlabel("state")
ax.legend(loc='upper right')
plt.show()

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968083

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import