SPSS学习笔记之——二项Logistic回归分析

2024-05-07 17:32

本文主要是介绍SPSS学习笔记之——二项Logistic回归分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 概述

Logistic回归主要用于因变量为分类变量(如疾病的缓解、不缓解,评比中的好、中、差等)的回归分析,自变量可以为分类变量,也可以为连续变量。他可以从多个自变量中选出对因变量有影响的自变量,并可以给出预测公式用于预测。

因变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。 

下面学习一下Odds、OR、RR的概念:

在病例对照研究中,可以画出下列的四格表:

------------------------------------------------------

暴露因素              病例             对照

-----------------------------------------------------

暴露                 a                 b 

非暴露               c                 d

-----------------------------------------------

Odds: 称为比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。在病例对照研究中病例组的暴露比值为:

odds1 = (a/(a+c))/(c(a+c)) = a/c,

对照组的暴露比值为:

odds2 = (b/(b+d))/(d/(b+d)) = b/d

OR比值比,为:病例组的暴露比值(odds1)/对照组的暴露比值(odds2) = ad/bc

 

换一种角度,暴露组的疾病发生比值:

odds1 = (a/(a+b))/(b(a+b)) = a/b

非暴露组的疾病发生比值:

odds2 = (c/(c+d))/(d/(c+d)) = c/d

OR = odds1/odds2 = ad/bc

与之前的结果一致。

 

OR的含义与相对危险度相同,指暴露组的疾病危险性为非暴露组的多少倍。OR>1说明疾病的危险度因暴露而增加,暴露与疾病之间为“正”关联;OR<1说明疾病的危险度因暴露而减少,暴露与疾病之间为“负”关联。 还应计算OR的置信区间,若区间跨1,一般说明该因素无意义。

关联强度大致如下:

------------------------------------------------------

       OR值                        联系强度

------------------------------------------------------

 0.9-1.0   1.0-1.1                    

 0.7-0.8   1.2-1.4       弱(前者为负关联,后者为正关联)

 0.4-0.6   1.5-2.9                 中等(同上)

 0.1-0.3   3.0-9.0                  强(同上)

  <0.1     10.0以上                很强(同上)

------------------------------------------------------

 

RR: 相对危险度(relative risk)的本质为率比(rate ratio)或危险比(risk ratio),即暴露组与非暴露组发病率之比,或发病的概率之比。但是病例对照研究不能计算发病率,所以病例对照研究中只能计算OR。当人群中疾病的发病率或者患病率很小时,OR近似等于RR,可用OR值代替RR。

不同发病率情况下,OR与RR的关系图如下:


SPSS学习笔记之——二项Logistic回归分析

当发病率<10%时,RR与OR很接近。当发病率增大时,两者的差别增大。当OR>1时,OR高估了RR,当OR<1时,OR低估了RR。

设疾病在非暴露人群中的发病为P0,则可用下列公式对RR记性校正:

RR = OR/((1-P0)+(P0*OR))

若P0未知,可以用c/(c+d)估计。

 

 


二、 问题

对银行拖欠贷款的影响因素进行分析,可选的影响因素有:客户的年龄、教育水平、工龄、居住年限、家庭收入、贷款收入比、信用卡欠款、其他债务等,从中选择出对是否拖欠贷款的预测因素,并进行预测。数据采用SPSS自带的bankloan.sav中的部分数据。

 

三、 统计操作

1、 准备数据 

变量视图

SPSS学习笔记之——二项Logistic回归分析

    数据视图

SPSS学习笔记之——二项Logistic回归分析

下面开始准备数据:

由于“default”变量可能存在缺失值,所以要新建一个变量"validate",当default不为缺失值时,将validate=1,然后通过validate来判断将不缺失的值纳入回归分析:

选择如下菜单:


SPSS学习笔记之——二项Logistic回归分析

点击进入“计算变量”对话框:


SPSS学习笔记之——二项Logistic回归分析

在“目标变量”看中输入“validate”,右边的“数字表达式”输入“1”。再点击下方的“如果...”按钮,进入对话框:


SPSS学习笔记之——二项Logistic回归分析

在框中输入missing(default)=0,含义是defalut变量不为缺失值。点击“继续”回到“计算变量”对话框:


SPSS学习笔记之——二项Logistic回归分析

点击确定,完成变量计算。 

2、统计

菜单选择


SPSS学习笔记之——二项Logistic回归分析

进入如下的对话框(下文称“主界面”):


SPSS学习笔记之——二项Logistic回归分析

将“是否拖欠贷款[default]”作为因变量选入“因变量”框中。将其与变量选入“协变量”框中,下方的“方法”下拉菜单选择“向前:LR”(即前向的最大似然法,选择变量筛选的方法,条件法和最大似然法较好,慎用Wald法)。将“validate”变量选入下方的“选择变量”框。点击“选择变量”框后的“规则”按钮,进入定义规则对话框:


SPSS学习笔记之——二项Logistic回归分析

设置条件为“validate=1”,点击“继续”按钮返回主界面:


SPSS学习笔记之——二项Logistic回归分析

点击右上角“分类”按钮,进入如下的对话框:


SPSS学习笔记之——二项Logistic回归分析

该对话框用来设置自变量中的分类变量,左边的为刚才选入的协变量,必须将所有分类变量选入右边的“分类协变量框中”。本例中只有“教育程度[ed]”为分类变量,将它选入右边框中,下方的“更改对比”可以默认。点击“继续”按钮返回主界面。

回到主界面后点击“选项”按钮,进入对话框:


SPSS学习笔记之——二项Logistic回归分析

勾选“分类图”和“Hosmer-Lemeshow拟合度”复选框,输出栏中选择“在最后一个步骤中”,其余参数默认即可。“Hosmer-Lemeshow拟合度”能较好的检验该模型的拟合程度。

点击继续回到主界面,点击“确定”输出结果。

 

四、结果分析


SPSS学习笔记之——二项Logistic回归分析

以上是案例处理摘要及变量的编码。


SPSS学习笔记之——二项Logistic回归分析

上表是关于模型拟合度的检验。这用Cox&Snell R方和Negelkerke R方代替了线性回归中的R方,他们呢的值越接近1,说明拟合度越好,这个他们分别为0.2980.436,单纯看这一点,似乎模型的拟合度不好,但是该参数主要是用于模型之间的对比。


SPSS学习笔记之——二项Logistic回归分析


这是H-L检验表,P=0.381 > 0.05接受0假设,认为该模型能很好拟合数据。


SPSS学习笔记之——二项Logistic回归分析


H-L检验的随机性表,比较观测值与期望值,表中观测值与期望值大致相同,可以直观的认为,该模型拟合度较好。

SPSS学习笔记之——二项Logistic回归分析

这个是最终模型的预测结果列联表。在700例数据中进行预测,在未拖欠贷款的478+39=517例中,有478例预测正确,正确率92.5%;在91+92=183例拖欠贷款的用户中,有92例预测正确,正确率50.3%。总的正确率81.4%。可以看出该模型对于非拖欠贷款者预测效果较好。


SPSS学习笔记之——二项Logistic回归分析


这是最终拟合的结果,四个变量入选,P值均<0.05。列“B”为偏回归系数,“S.E.”为标准误差,“Wals”为Wald统计量。EXP(B)”即为相应变量的OR值(又叫优势比,比值比),为在其他条件不变的情况下,自变量每改变1个单位,事件的发生比“Odds”的变化率。如工龄为2年的用户的拖欠贷款的发生比(Odds)是工龄为1年的用户的0.785倍。

最终的拟合方程式:logit(P)  =  -0.791 - 0.243*employ - 0.081*address + 0.088*detbinc + 0.573*creddebt。用该方程可以做预测,预测值大于0.5说明用户可能会拖欠贷款,小于0.5说明可能不会拖欠贷款。


SPSS学习笔记之——二项Logistic回归分析


这是不在方程中的变量,其P均大于0.05,没有统计学意义

SPSS学习笔记之——二项Logistic回归分析

这是预测概率的直方图。横轴为拖欠贷款的预测概率(0为不拖欠,1为拖欠),纵轴为观测的频数,符号“Y”代表拖欠,“N”代表不拖欠。若预测正确,所有的Y均应在横轴0.5分界点的右边,所有的N均应该在0.5分界点的左边,数据分布为“U”型,中间数据少,两头数据多。可以直观的看出,本模型对于不拖欠贷款的预测较好,对于拖欠贷款的预测相对较差。

这篇关于SPSS学习笔记之——二项Logistic回归分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967920

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者