SPSS学习笔记之——二项Logistic回归分析

2024-05-07 17:32

本文主要是介绍SPSS学习笔记之——二项Logistic回归分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 概述

Logistic回归主要用于因变量为分类变量(如疾病的缓解、不缓解,评比中的好、中、差等)的回归分析,自变量可以为分类变量,也可以为连续变量。他可以从多个自变量中选出对因变量有影响的自变量,并可以给出预测公式用于预测。

因变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。 

下面学习一下Odds、OR、RR的概念:

在病例对照研究中,可以画出下列的四格表:

------------------------------------------------------

暴露因素              病例             对照

-----------------------------------------------------

暴露                 a                 b 

非暴露               c                 d

-----------------------------------------------

Odds: 称为比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。在病例对照研究中病例组的暴露比值为:

odds1 = (a/(a+c))/(c(a+c)) = a/c,

对照组的暴露比值为:

odds2 = (b/(b+d))/(d/(b+d)) = b/d

OR比值比,为:病例组的暴露比值(odds1)/对照组的暴露比值(odds2) = ad/bc

 

换一种角度,暴露组的疾病发生比值:

odds1 = (a/(a+b))/(b(a+b)) = a/b

非暴露组的疾病发生比值:

odds2 = (c/(c+d))/(d/(c+d)) = c/d

OR = odds1/odds2 = ad/bc

与之前的结果一致。

 

OR的含义与相对危险度相同,指暴露组的疾病危险性为非暴露组的多少倍。OR>1说明疾病的危险度因暴露而增加,暴露与疾病之间为“正”关联;OR<1说明疾病的危险度因暴露而减少,暴露与疾病之间为“负”关联。 还应计算OR的置信区间,若区间跨1,一般说明该因素无意义。

关联强度大致如下:

------------------------------------------------------

       OR值                        联系强度

------------------------------------------------------

 0.9-1.0   1.0-1.1                    

 0.7-0.8   1.2-1.4       弱(前者为负关联,后者为正关联)

 0.4-0.6   1.5-2.9                 中等(同上)

 0.1-0.3   3.0-9.0                  强(同上)

  <0.1     10.0以上                很强(同上)

------------------------------------------------------

 

RR: 相对危险度(relative risk)的本质为率比(rate ratio)或危险比(risk ratio),即暴露组与非暴露组发病率之比,或发病的概率之比。但是病例对照研究不能计算发病率,所以病例对照研究中只能计算OR。当人群中疾病的发病率或者患病率很小时,OR近似等于RR,可用OR值代替RR。

不同发病率情况下,OR与RR的关系图如下:


SPSS学习笔记之——二项Logistic回归分析

当发病率<10%时,RR与OR很接近。当发病率增大时,两者的差别增大。当OR>1时,OR高估了RR,当OR<1时,OR低估了RR。

设疾病在非暴露人群中的发病为P0,则可用下列公式对RR记性校正:

RR = OR/((1-P0)+(P0*OR))

若P0未知,可以用c/(c+d)估计。

 

 


二、 问题

对银行拖欠贷款的影响因素进行分析,可选的影响因素有:客户的年龄、教育水平、工龄、居住年限、家庭收入、贷款收入比、信用卡欠款、其他债务等,从中选择出对是否拖欠贷款的预测因素,并进行预测。数据采用SPSS自带的bankloan.sav中的部分数据。

 

三、 统计操作

1、 准备数据 

变量视图

SPSS学习笔记之——二项Logistic回归分析

    数据视图

SPSS学习笔记之——二项Logistic回归分析

下面开始准备数据:

由于“default”变量可能存在缺失值,所以要新建一个变量"validate",当default不为缺失值时,将validate=1,然后通过validate来判断将不缺失的值纳入回归分析:

选择如下菜单:


SPSS学习笔记之——二项Logistic回归分析

点击进入“计算变量”对话框:


SPSS学习笔记之——二项Logistic回归分析

在“目标变量”看中输入“validate”,右边的“数字表达式”输入“1”。再点击下方的“如果...”按钮,进入对话框:


SPSS学习笔记之——二项Logistic回归分析

在框中输入missing(default)=0,含义是defalut变量不为缺失值。点击“继续”回到“计算变量”对话框:


SPSS学习笔记之——二项Logistic回归分析

点击确定,完成变量计算。 

2、统计

菜单选择


SPSS学习笔记之——二项Logistic回归分析

进入如下的对话框(下文称“主界面”):


SPSS学习笔记之——二项Logistic回归分析

将“是否拖欠贷款[default]”作为因变量选入“因变量”框中。将其与变量选入“协变量”框中,下方的“方法”下拉菜单选择“向前:LR”(即前向的最大似然法,选择变量筛选的方法,条件法和最大似然法较好,慎用Wald法)。将“validate”变量选入下方的“选择变量”框。点击“选择变量”框后的“规则”按钮,进入定义规则对话框:


SPSS学习笔记之——二项Logistic回归分析

设置条件为“validate=1”,点击“继续”按钮返回主界面:


SPSS学习笔记之——二项Logistic回归分析

点击右上角“分类”按钮,进入如下的对话框:


SPSS学习笔记之——二项Logistic回归分析

该对话框用来设置自变量中的分类变量,左边的为刚才选入的协变量,必须将所有分类变量选入右边的“分类协变量框中”。本例中只有“教育程度[ed]”为分类变量,将它选入右边框中,下方的“更改对比”可以默认。点击“继续”按钮返回主界面。

回到主界面后点击“选项”按钮,进入对话框:


SPSS学习笔记之——二项Logistic回归分析

勾选“分类图”和“Hosmer-Lemeshow拟合度”复选框,输出栏中选择“在最后一个步骤中”,其余参数默认即可。“Hosmer-Lemeshow拟合度”能较好的检验该模型的拟合程度。

点击继续回到主界面,点击“确定”输出结果。

 

四、结果分析


SPSS学习笔记之——二项Logistic回归分析

以上是案例处理摘要及变量的编码。


SPSS学习笔记之——二项Logistic回归分析

上表是关于模型拟合度的检验。这用Cox&Snell R方和Negelkerke R方代替了线性回归中的R方,他们呢的值越接近1,说明拟合度越好,这个他们分别为0.2980.436,单纯看这一点,似乎模型的拟合度不好,但是该参数主要是用于模型之间的对比。


SPSS学习笔记之——二项Logistic回归分析


这是H-L检验表,P=0.381 > 0.05接受0假设,认为该模型能很好拟合数据。


SPSS学习笔记之——二项Logistic回归分析


H-L检验的随机性表,比较观测值与期望值,表中观测值与期望值大致相同,可以直观的认为,该模型拟合度较好。

SPSS学习笔记之——二项Logistic回归分析

这个是最终模型的预测结果列联表。在700例数据中进行预测,在未拖欠贷款的478+39=517例中,有478例预测正确,正确率92.5%;在91+92=183例拖欠贷款的用户中,有92例预测正确,正确率50.3%。总的正确率81.4%。可以看出该模型对于非拖欠贷款者预测效果较好。


SPSS学习笔记之——二项Logistic回归分析


这是最终拟合的结果,四个变量入选,P值均<0.05。列“B”为偏回归系数,“S.E.”为标准误差,“Wals”为Wald统计量。EXP(B)”即为相应变量的OR值(又叫优势比,比值比),为在其他条件不变的情况下,自变量每改变1个单位,事件的发生比“Odds”的变化率。如工龄为2年的用户的拖欠贷款的发生比(Odds)是工龄为1年的用户的0.785倍。

最终的拟合方程式:logit(P)  =  -0.791 - 0.243*employ - 0.081*address + 0.088*detbinc + 0.573*creddebt。用该方程可以做预测,预测值大于0.5说明用户可能会拖欠贷款,小于0.5说明可能不会拖欠贷款。


SPSS学习笔记之——二项Logistic回归分析


这是不在方程中的变量,其P均大于0.05,没有统计学意义

SPSS学习笔记之——二项Logistic回归分析

这是预测概率的直方图。横轴为拖欠贷款的预测概率(0为不拖欠,1为拖欠),纵轴为观测的频数,符号“Y”代表拖欠,“N”代表不拖欠。若预测正确,所有的Y均应在横轴0.5分界点的右边,所有的N均应该在0.5分界点的左边,数据分布为“U”型,中间数据少,两头数据多。可以直观的看出,本模型对于不拖欠贷款的预测较好,对于拖欠贷款的预测相对较差。

这篇关于SPSS学习笔记之——二项Logistic回归分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967920

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入