SPSS学习笔记之——二项Logistic回归分析

2024-05-07 17:32

本文主要是介绍SPSS学习笔记之——二项Logistic回归分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 概述

Logistic回归主要用于因变量为分类变量(如疾病的缓解、不缓解,评比中的好、中、差等)的回归分析,自变量可以为分类变量,也可以为连续变量。他可以从多个自变量中选出对因变量有影响的自变量,并可以给出预测公式用于预测。

因变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。 

下面学习一下Odds、OR、RR的概念:

在病例对照研究中,可以画出下列的四格表:

------------------------------------------------------

暴露因素              病例             对照

-----------------------------------------------------

暴露                 a                 b 

非暴露               c                 d

-----------------------------------------------

Odds: 称为比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。在病例对照研究中病例组的暴露比值为:

odds1 = (a/(a+c))/(c(a+c)) = a/c,

对照组的暴露比值为:

odds2 = (b/(b+d))/(d/(b+d)) = b/d

OR比值比,为:病例组的暴露比值(odds1)/对照组的暴露比值(odds2) = ad/bc

 

换一种角度,暴露组的疾病发生比值:

odds1 = (a/(a+b))/(b(a+b)) = a/b

非暴露组的疾病发生比值:

odds2 = (c/(c+d))/(d/(c+d)) = c/d

OR = odds1/odds2 = ad/bc

与之前的结果一致。

 

OR的含义与相对危险度相同,指暴露组的疾病危险性为非暴露组的多少倍。OR>1说明疾病的危险度因暴露而增加,暴露与疾病之间为“正”关联;OR<1说明疾病的危险度因暴露而减少,暴露与疾病之间为“负”关联。 还应计算OR的置信区间,若区间跨1,一般说明该因素无意义。

关联强度大致如下:

------------------------------------------------------

       OR值                        联系强度

------------------------------------------------------

 0.9-1.0   1.0-1.1                    

 0.7-0.8   1.2-1.4       弱(前者为负关联,后者为正关联)

 0.4-0.6   1.5-2.9                 中等(同上)

 0.1-0.3   3.0-9.0                  强(同上)

  <0.1     10.0以上                很强(同上)

------------------------------------------------------

 

RR: 相对危险度(relative risk)的本质为率比(rate ratio)或危险比(risk ratio),即暴露组与非暴露组发病率之比,或发病的概率之比。但是病例对照研究不能计算发病率,所以病例对照研究中只能计算OR。当人群中疾病的发病率或者患病率很小时,OR近似等于RR,可用OR值代替RR。

不同发病率情况下,OR与RR的关系图如下:


SPSS学习笔记之——二项Logistic回归分析

当发病率<10%时,RR与OR很接近。当发病率增大时,两者的差别增大。当OR>1时,OR高估了RR,当OR<1时,OR低估了RR。

设疾病在非暴露人群中的发病为P0,则可用下列公式对RR记性校正:

RR = OR/((1-P0)+(P0*OR))

若P0未知,可以用c/(c+d)估计。

 

 


二、 问题

对银行拖欠贷款的影响因素进行分析,可选的影响因素有:客户的年龄、教育水平、工龄、居住年限、家庭收入、贷款收入比、信用卡欠款、其他债务等,从中选择出对是否拖欠贷款的预测因素,并进行预测。数据采用SPSS自带的bankloan.sav中的部分数据。

 

三、 统计操作

1、 准备数据 

变量视图

SPSS学习笔记之——二项Logistic回归分析

    数据视图

SPSS学习笔记之——二项Logistic回归分析

下面开始准备数据:

由于“default”变量可能存在缺失值,所以要新建一个变量"validate",当default不为缺失值时,将validate=1,然后通过validate来判断将不缺失的值纳入回归分析:

选择如下菜单:


SPSS学习笔记之——二项Logistic回归分析

点击进入“计算变量”对话框:


SPSS学习笔记之——二项Logistic回归分析

在“目标变量”看中输入“validate”,右边的“数字表达式”输入“1”。再点击下方的“如果...”按钮,进入对话框:


SPSS学习笔记之——二项Logistic回归分析

在框中输入missing(default)=0,含义是defalut变量不为缺失值。点击“继续”回到“计算变量”对话框:


SPSS学习笔记之——二项Logistic回归分析

点击确定,完成变量计算。 

2、统计

菜单选择


SPSS学习笔记之——二项Logistic回归分析

进入如下的对话框(下文称“主界面”):


SPSS学习笔记之——二项Logistic回归分析

将“是否拖欠贷款[default]”作为因变量选入“因变量”框中。将其与变量选入“协变量”框中,下方的“方法”下拉菜单选择“向前:LR”(即前向的最大似然法,选择变量筛选的方法,条件法和最大似然法较好,慎用Wald法)。将“validate”变量选入下方的“选择变量”框。点击“选择变量”框后的“规则”按钮,进入定义规则对话框:


SPSS学习笔记之——二项Logistic回归分析

设置条件为“validate=1”,点击“继续”按钮返回主界面:


SPSS学习笔记之——二项Logistic回归分析

点击右上角“分类”按钮,进入如下的对话框:


SPSS学习笔记之——二项Logistic回归分析

该对话框用来设置自变量中的分类变量,左边的为刚才选入的协变量,必须将所有分类变量选入右边的“分类协变量框中”。本例中只有“教育程度[ed]”为分类变量,将它选入右边框中,下方的“更改对比”可以默认。点击“继续”按钮返回主界面。

回到主界面后点击“选项”按钮,进入对话框:


SPSS学习笔记之——二项Logistic回归分析

勾选“分类图”和“Hosmer-Lemeshow拟合度”复选框,输出栏中选择“在最后一个步骤中”,其余参数默认即可。“Hosmer-Lemeshow拟合度”能较好的检验该模型的拟合程度。

点击继续回到主界面,点击“确定”输出结果。

 

四、结果分析


SPSS学习笔记之——二项Logistic回归分析

以上是案例处理摘要及变量的编码。


SPSS学习笔记之——二项Logistic回归分析

上表是关于模型拟合度的检验。这用Cox&Snell R方和Negelkerke R方代替了线性回归中的R方,他们呢的值越接近1,说明拟合度越好,这个他们分别为0.2980.436,单纯看这一点,似乎模型的拟合度不好,但是该参数主要是用于模型之间的对比。


SPSS学习笔记之——二项Logistic回归分析


这是H-L检验表,P=0.381 > 0.05接受0假设,认为该模型能很好拟合数据。


SPSS学习笔记之——二项Logistic回归分析


H-L检验的随机性表,比较观测值与期望值,表中观测值与期望值大致相同,可以直观的认为,该模型拟合度较好。

SPSS学习笔记之——二项Logistic回归分析

这个是最终模型的预测结果列联表。在700例数据中进行预测,在未拖欠贷款的478+39=517例中,有478例预测正确,正确率92.5%;在91+92=183例拖欠贷款的用户中,有92例预测正确,正确率50.3%。总的正确率81.4%。可以看出该模型对于非拖欠贷款者预测效果较好。


SPSS学习笔记之——二项Logistic回归分析


这是最终拟合的结果,四个变量入选,P值均<0.05。列“B”为偏回归系数,“S.E.”为标准误差,“Wals”为Wald统计量。EXP(B)”即为相应变量的OR值(又叫优势比,比值比),为在其他条件不变的情况下,自变量每改变1个单位,事件的发生比“Odds”的变化率。如工龄为2年的用户的拖欠贷款的发生比(Odds)是工龄为1年的用户的0.785倍。

最终的拟合方程式:logit(P)  =  -0.791 - 0.243*employ - 0.081*address + 0.088*detbinc + 0.573*creddebt。用该方程可以做预测,预测值大于0.5说明用户可能会拖欠贷款,小于0.5说明可能不会拖欠贷款。


SPSS学习笔记之——二项Logistic回归分析


这是不在方程中的变量,其P均大于0.05,没有统计学意义

SPSS学习笔记之——二项Logistic回归分析

这是预测概率的直方图。横轴为拖欠贷款的预测概率(0为不拖欠,1为拖欠),纵轴为观测的频数,符号“Y”代表拖欠,“N”代表不拖欠。若预测正确,所有的Y均应在横轴0.5分界点的右边,所有的N均应该在0.5分界点的左边,数据分布为“U”型,中间数据少,两头数据多。可以直观的看出,本模型对于不拖欠贷款的预测较好,对于拖欠贷款的预测相对较差。

这篇关于SPSS学习笔记之——二项Logistic回归分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967920

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结