#########TensorBoard——Tensor与Graph可视化####(如何使用参考上一篇介绍)#######

本文主要是介绍#########TensorBoard——Tensor与Graph可视化####(如何使用参考上一篇介绍)#######,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本文基于TensorFlow官网How-Tos的Visualizing Learning和Graph Visualization写成。

TensorBoard是TensorFlow自带的一个可视化工具。本文在学习笔记(4)的基础上修改少量代码,以探索TensorBoard的使用方法。

代码

# -*- coding=utf-8 -*-
# @author: 陈水平
# @date: 2017-02-09
# @description: implement a softmax regression model upon MNIST handwritten digits
# @ref: http://yann.lecun.com/exdb/mnist/import gzip
import struct
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
import tensorflow as tf# MNIST data is stored in binary format, 
# and we transform them into numpy ndarray objects by the following two utility functions
def read_image(file_name):with gzip.open(file_name, 'rb') as f:buf = f.read()index = 0magic, images, rows, columns = struct.unpack_from('>IIII' , buf , index)index += struct.calcsize('>IIII')image_size = '>' + str(images*rows*columns) + 'B'ims = struct.unpack_from(image_size, buf, index)im_array = np.array(ims).reshape(images, rows, columns)return im_arraydef read_label(file_name):with gzip.open(file_name, 'rb') as f:buf = f.read()index = 0magic, labels = struct.unpack_from('>II', buf, index)index += struct.calcsize('>II')label_size = '>' + str(labels) + 'B'labels = struct.unpack_from(label_size, buf, index)label_array = np.array(labels)return label_arrayprint "Start processing MNIST handwritten digits data..."
train_x_data = read_image("MNIST_data/train-images-idx3-ubyte.gz")
train_x_data = train_x_data.reshape(train_x_data.shape[0], -1).astype(np.float32)
train_y_data = read_label("MNIST_data/train-labels-idx1-ubyte.gz")
test_x_data = read_image("MNIST_data/t10k-images-idx3-ubyte.gz")
test_x_data = test_x_data.reshape(test_x_data.shape[0], -1).astype(np.float32)
test_y_data = read_label("MNIST_data/t10k-labels-idx1-ubyte.gz")train_x_minmax = train_x_data / 255.0
test_x_minmax = test_x_data / 255.0# Of course you can also use the utility function to read in MNIST provided by tensorflow
# from tensorflow.examples.tutorials.mnist import input_data
# mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)
# train_x_minmax = mnist.train.images
# train_y_data = mnist.train.labels
# test_x_minmax = mnist.test.images
# test_y_data = mnist.test.labels# We evaluate the softmax regression model by sklearn first
eval_sklearn = False
if eval_sklearn:print "Start evaluating softmax regression model by sklearn..."reg = LogisticRegression(solver="lbfgs", multi_class="multinomial")reg.fit(train_x_minmax, train_y_data)np.savetxt('coef_softmax_sklearn.txt', reg.coef_, fmt='%.6f')  # Save coefficients to a text filetest_y_predict = reg.predict(test_x_minmax)print "Accuracy of test set: %f" % accuracy_score(test_y_data, test_y_predict)eval_tensorflow = True
batch_gradient = Falsedef variable_summaries(var):with tf.name_scope('summaries'):mean = tf.reduce_mean(var)tf.summary.scalar('mean', mean)stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))tf.summary.scalar('stddev', stddev)tf.summary.scalar('max', tf.reduce_max(var))tf.summary.scalar('min', tf.reduce_min(var))tf.summary.histogram('histogram', var)
if eval_tensorflow:print "Start evaluating softmax regression model by tensorflow..."# reformat y into one-hot encoding stylelb = preprocessing.LabelBinarizer()lb.fit(train_y_data)train_y_data_trans = lb.transform(train_y_data)test_y_data_trans = lb.transform(test_y_data)x = tf.placeholder(tf.float32, [None, 784])with tf.name_scope('weights'):W = tf.Variable(tf.zeros([784, 10]))variable_summaries(W)with tf.name_scope('biases'):b = tf.Variable(tf.zeros([10]))variable_summaries(b)with tf.name_scope('Wx_plus_b'):V = tf.matmul(x, W) + btf.summary.histogram('pre_activations', V)with tf.name_scope('softmax'):y = tf.nn.softmax(V)tf.summary.histogram('activations', y)y_ = tf.placeholder(tf.float32, [None, 10])with tf.name_scope('cross_entropy'):loss = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))tf.summary.scalar('cross_entropy', loss)with tf.name_scope('train'):optimizer = tf.train.GradientDescentOptimizer(0.5)train = optimizer.minimize(loss)with tf.name_scope('evaluate'):with tf.name_scope('correct_prediction'):correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))with tf.name_scope('accuracy'):accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))tf.summary.scalar('accuracy', accuracy)init = tf.global_variables_initializer()sess = tf.Session()sess.run(init)merged = tf.summary.merge_all()train_writer = tf.summary.FileWriter('log/train', sess.graph)test_writer = tf.summary.FileWriter('log/test')if batch_gradient:for step in range(300):sess.run(train, feed_dict={x: train_x_minmax, y_: train_y_data_trans})if step % 10 == 0:print "Batch Gradient Descent processing step %d" % stepprint "Finally we got the estimated results, take such a long time..."else:for step in range(1000):if step % 10 == 0:summary, acc = sess.run([merged, accuracy], feed_dict={x: test_x_minmax, y_: test_y_data_trans})test_writer.add_summary(summary, step)print "Stochastic Gradient Descent processing step %d accuracy=%.2f" % (step, acc)else:sample_index = np.random.choice(train_x_minmax.shape[0], 100)batch_xs = train_x_minmax[sample_index, :]batch_ys = train_y_data_trans[sample_index, :]summary, _ = sess.run([merged, train], feed_dict={x: batch_xs, y_: batch_ys})train_writer.add_summary(summary, step)np.savetxt('coef_softmax_tf.txt', np.transpose(sess.run(W)), fmt='%.6f')  # Save coefficients to a text fileprint "Accuracy of test set: %f" % sess.run(accuracy, feed_dict={x: test_x_minmax, y_: test_y_data_trans})

思考

主要修改点有:

  • Summary:所有需要在TensorBoard上展示的统计结果。

  • tf.name_scope():为Graph中的Tensor添加层级,TensorBoard会按照代码指定的层级进行展示,初始状态下只绘制最高层级的效果,点击后可展开层级看到下一层的细节。

  • tf.summary.scalar():添加标量统计结果。

  • tf.summary.histogram():添加任意shape的Tensor,统计这个Tensor的取值分布。

  • tf.summary.merge_all():添加一个操作,代表执行所有summary操作,这样可以避免人工执行每一个summary op。

  • tf.summary.FileWrite:用于将Summary写入磁盘,需要制定存储路径logdir,如果传递了Graph对象,则在Graph Visualization会显示Tensor Shape Information。执行summary op后,将返回结果传递给add_summary()方法即可。

效果

Visualizing Learning

Scalar

Histogram

首先是Distribution,显示取值范围:

更细节的取值概率信息在Historgram里,如下:

Graph Visualization

双击train后,可查看下一层级的详细信息:


这篇关于#########TensorBoard——Tensor与Graph可视化####(如何使用参考上一篇介绍)#######的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967807

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、