##单机版Python##社团划分——有向图的Label Propagation算法

2024-05-07 14:58

本文主要是介绍##单机版Python##社团划分——有向图的Label Propagation算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在博文社区划分——Label Propagation中,介绍了Label Propagation社区划分算法的基本原理,基本的Label Propagation算法是针对无向图的社区划分算法。

一、基本Label Propagation算法原理

对于网络中的每一个节点,在初始阶段,Label Propagation算法对每一个节点一个唯一的标签,在每一个迭代的过程中,每一个节点根据与其相连的节点所属的标签改变自己的标签,更改的原则是选择与其相连的节点中所属标签最多的社区标签为自己的社区标签,这便是标签传播的含义。随着社区标签的不断传播,最终紧密连接的节点将有共同的标签。

其中,标签的异步更新方式如下:

                                       Cx(t)=f(Cxi1(t),,Cxim(t),Cxi(m+1)(t1),,     Cxik(t1))

Label Propagation算法的过程如下:

  • 对网络中的每一节点初始化其所属社区标签,如对于节点x,初始化其社区标签为Cx(0)=x
  • 设置代数t
  • 对于网络中的节点设置其遍历顺序和节点的集合X
  • 对于每一个节点xX,令Cx(t)=f(Cxi1(t),,Cxim(t),Cxi(m+1)(t1),,Cxik(t1))
  • 判断是否可以迭代结束,如果否,则设置t=t+1,重新遍历。

二、有向图的Label Propagation算法

1、有向图

有向图是指图中的边是带有方向的图。对于有向图,每两个节点之间的边的条数是两条,分别为流出的边和流入的边,其流出边的总数为出度,流入边的总数为入度,如下图的有向图:

这里写图片描述
(图片来自百度百科)

对于节点5,其出度为2,入度也为2。对于更多的有向图的知识,可参阅相关图论的书。

2、对于Label Propagation算法的修正

要使得Label Propagation算法能够求解有向图的社区划分,问题即变为如何将有向图转换成无向图。即如何定义有向图中两个节点之间的边的权重。对于这个问题,设计了如下的公式:

wi,j=αλi,j+βλj,i

其中wi,j表示的是节点j对于节点i的权重,λi,j表示的是节点i到节点j的权重,λj,i表示的是节点j到节点i的权重。通过参数α和参数β可以调节不同的权重比例。

通过如上的办法将有向图的Label Propagation算法转换成无向图的Label Propagation算法进行求解。

三、实验

对于如下的数据:

0   2   1
2   0   2
0   3   2
3   0   1
0   4   3
4   0   1
0   5   2
5   0   1
1   2   3
2   1   1
1   4   5
4   1   2
1   7   1
7   1   4
2   4   2
4   2   2
2   5   9
5   2   7
2   6   1
6   2   4
3   7   1
7   3   5
4   10  1
10  4   4
5   7   1
7   5   2
5   11  1
11  5   2
6   7   3
7   6   7
6   11  5
11  6   2
8   9   1
9   8   6
8   10  4
10  8   2
8   11  2
11  8   1
8   14  5
14  8   3
8   15  8
15  8   5
9   12  2
12  9   1
9   14  1
14  9   2
10  11  10
11  10  1
10  12  2
12  10  3
10  13  9
13  10  8
10  14  8
14  10  7
11  13  1
13  11  4

程序源码如下:

#####################################
# Author:zhaozhiyong
# Date:20160602
# Fun:Label Propagation
#####################################
import stringdef loadData(filePath):f = open(filePath)vector_dict = {}edge_dict_out = {}#outedge_dict_in = {}#infor line in f.readlines():lines = line.strip().split("\t")if lines[0] not in vector_dict:vector_dict[lines[0]] = string.atoi(lines[0])if lines[1] not in vector_dict:vector_dict[lines[1]] = string.atoi(lines[1])if lines[0] not in edge_dict_out:edge_list = []if len(lines) == 3:edge_list.append(lines[1] + ":" + lines[2])edge_dict_out[lines[0]] = edge_listelse:edge_list = edge_dict_out[lines[0]]if len(lines) == 3:edge_list.append(lines[1] + ":" + lines[2])edge_dict_out[lines[0]] = edge_listif lines[1] not in edge_dict_in:edge_list = []if len(lines) == 3:edge_list.append(lines[0] + ":" + lines[2])edge_dict_in[lines[1]] = edge_listelse:edge_list = edge_dict_in[lines[1]]if len(lines) == 3:edge_list.append(lines[0] + ":" + lines[2])edge_dict_in[lines[1]] = edge_listf.close()return vector_dict, edge_dict_out, edge_dict_indef get_max_community_label(vector_dict, adjacency_node_list):label_dict = {}# generate the label_dictfor node in adjacency_node_list:node_id_weight = node.strip().split(":")node_id = node_id_weight[0]node_weight = float(node_id_weight[1])if vector_dict[node_id] not in label_dict:label_dict[vector_dict[node_id]] = node_weightelse:label_dict[vector_dict[node_id]] += node_weight# find the max labelsort_list = sorted(label_dict.items(), key = lambda d: d[1], reverse=True)return sort_list[0][0]def check(vector_dict, edge_dict):#for every nodefor node in vector_dict.keys():adjacency_node_list = edge_dict[node]node_label = vector_dict[node]#suject to label_check = {}for ad_node in adjacency_node_list:node_id_weight = ad_node.strip().split(":")node_id = node_id_weight[0]node_weight = node_id_weight[1]if vector_dict[node_id] not in label_check:label_check[vector_dict[node_id]] = float(node_weight)else:label_check[vector_dict[node_id]] += float(node_weight)#print label_checksort_list = sorted(label_check.items(), key = lambda d: d[1], reverse=True)if node_label == sort_list[0][0]:continueelse:return 0return 1    def label_propagation(vector_dict, edge_dict_out, edge_dict_in):#rebuild edge_dictedge_dict = {}for node in vector_dict.iterkeys():out_list = edge_dict_out[node]in_list = edge_dict_in[node]#print "node:", node#print "out_list:", out_list#print "in_list:", in_list#print "------------------------------------------------"out_dict = {}for out_x in out_list:out_xs = out_x.strip().split(":")if out_xs[0] not in out_dict:out_dict[out_xs[0]] = float(out_xs[1])in_dict = {}for in_x in in_list:in_xs = in_x.strip().split(":")if in_xs[0] not in in_dict:in_dict[in_xs[0]] = float(in_xs[1])#print "out_dict:", out_dict#print "in_dict:", in_dictlast_list = []for x in out_dict.iterkeys():out_x = out_dict[x]in_x = 0.0if x in in_dict:in_x = in_dict.pop(x)result = out_x + 0.5 * in_xlast_list.append(x + ":" + str(result))if not in_dict:for x in in_dict.iterkeys():in_x = in_dict[x]result = 0.5 * in_xlast_list.append(x + ":" + str(result))#print "last_list:", last_listif node not in edge_dict:edge_dict[node] = last_list#initial, let every vector belongs to a communityt = 0#for every node in a random orderwhile True:if (check(vector_dict, edge_dict) == 0):t = t+1print "----------------------------------------"print "iteration: ", tfor node in vector_dict.keys():adjacency_node_list = edge_dict[node]vector_dict[node] = get_max_community_label(vector_dict, adjacency_node_list)print vector_dictelse:breakreturn vector_dictif __name__ == "__main__":vector_dict, edge_dict_out, edge_dict_in = loadData("./cd_data.txt")print vector_dictprint edge_dict_outprint edge_dict_in#print "original community: ", vector_dictvec_new = label_propagation(vector_dict, edge_dict_out, edge_dict_in)print "---------------------------------------------------------"print "the final result: "for key in vec_new.keys():print str(key) + " ---> " + str(vec_new[key])

最终的结果:

这里写图片描述

程序和数据的github地址

这篇关于##单机版Python##社团划分——有向图的Label Propagation算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967676

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费