##单机版Python##社团划分——有向图的Label Propagation算法

2024-05-07 14:58

本文主要是介绍##单机版Python##社团划分——有向图的Label Propagation算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在博文社区划分——Label Propagation中,介绍了Label Propagation社区划分算法的基本原理,基本的Label Propagation算法是针对无向图的社区划分算法。

一、基本Label Propagation算法原理

对于网络中的每一个节点,在初始阶段,Label Propagation算法对每一个节点一个唯一的标签,在每一个迭代的过程中,每一个节点根据与其相连的节点所属的标签改变自己的标签,更改的原则是选择与其相连的节点中所属标签最多的社区标签为自己的社区标签,这便是标签传播的含义。随着社区标签的不断传播,最终紧密连接的节点将有共同的标签。

其中,标签的异步更新方式如下:

                                       Cx(t)=f(Cxi1(t),,Cxim(t),Cxi(m+1)(t1),,     Cxik(t1))

Label Propagation算法的过程如下:

  • 对网络中的每一节点初始化其所属社区标签,如对于节点x,初始化其社区标签为Cx(0)=x
  • 设置代数t
  • 对于网络中的节点设置其遍历顺序和节点的集合X
  • 对于每一个节点xX,令Cx(t)=f(Cxi1(t),,Cxim(t),Cxi(m+1)(t1),,Cxik(t1))
  • 判断是否可以迭代结束,如果否,则设置t=t+1,重新遍历。

二、有向图的Label Propagation算法

1、有向图

有向图是指图中的边是带有方向的图。对于有向图,每两个节点之间的边的条数是两条,分别为流出的边和流入的边,其流出边的总数为出度,流入边的总数为入度,如下图的有向图:

这里写图片描述
(图片来自百度百科)

对于节点5,其出度为2,入度也为2。对于更多的有向图的知识,可参阅相关图论的书。

2、对于Label Propagation算法的修正

要使得Label Propagation算法能够求解有向图的社区划分,问题即变为如何将有向图转换成无向图。即如何定义有向图中两个节点之间的边的权重。对于这个问题,设计了如下的公式:

wi,j=αλi,j+βλj,i

其中wi,j表示的是节点j对于节点i的权重,λi,j表示的是节点i到节点j的权重,λj,i表示的是节点j到节点i的权重。通过参数α和参数β可以调节不同的权重比例。

通过如上的办法将有向图的Label Propagation算法转换成无向图的Label Propagation算法进行求解。

三、实验

对于如下的数据:

0   2   1
2   0   2
0   3   2
3   0   1
0   4   3
4   0   1
0   5   2
5   0   1
1   2   3
2   1   1
1   4   5
4   1   2
1   7   1
7   1   4
2   4   2
4   2   2
2   5   9
5   2   7
2   6   1
6   2   4
3   7   1
7   3   5
4   10  1
10  4   4
5   7   1
7   5   2
5   11  1
11  5   2
6   7   3
7   6   7
6   11  5
11  6   2
8   9   1
9   8   6
8   10  4
10  8   2
8   11  2
11  8   1
8   14  5
14  8   3
8   15  8
15  8   5
9   12  2
12  9   1
9   14  1
14  9   2
10  11  10
11  10  1
10  12  2
12  10  3
10  13  9
13  10  8
10  14  8
14  10  7
11  13  1
13  11  4

程序源码如下:

#####################################
# Author:zhaozhiyong
# Date:20160602
# Fun:Label Propagation
#####################################
import stringdef loadData(filePath):f = open(filePath)vector_dict = {}edge_dict_out = {}#outedge_dict_in = {}#infor line in f.readlines():lines = line.strip().split("\t")if lines[0] not in vector_dict:vector_dict[lines[0]] = string.atoi(lines[0])if lines[1] not in vector_dict:vector_dict[lines[1]] = string.atoi(lines[1])if lines[0] not in edge_dict_out:edge_list = []if len(lines) == 3:edge_list.append(lines[1] + ":" + lines[2])edge_dict_out[lines[0]] = edge_listelse:edge_list = edge_dict_out[lines[0]]if len(lines) == 3:edge_list.append(lines[1] + ":" + lines[2])edge_dict_out[lines[0]] = edge_listif lines[1] not in edge_dict_in:edge_list = []if len(lines) == 3:edge_list.append(lines[0] + ":" + lines[2])edge_dict_in[lines[1]] = edge_listelse:edge_list = edge_dict_in[lines[1]]if len(lines) == 3:edge_list.append(lines[0] + ":" + lines[2])edge_dict_in[lines[1]] = edge_listf.close()return vector_dict, edge_dict_out, edge_dict_indef get_max_community_label(vector_dict, adjacency_node_list):label_dict = {}# generate the label_dictfor node in adjacency_node_list:node_id_weight = node.strip().split(":")node_id = node_id_weight[0]node_weight = float(node_id_weight[1])if vector_dict[node_id] not in label_dict:label_dict[vector_dict[node_id]] = node_weightelse:label_dict[vector_dict[node_id]] += node_weight# find the max labelsort_list = sorted(label_dict.items(), key = lambda d: d[1], reverse=True)return sort_list[0][0]def check(vector_dict, edge_dict):#for every nodefor node in vector_dict.keys():adjacency_node_list = edge_dict[node]node_label = vector_dict[node]#suject to label_check = {}for ad_node in adjacency_node_list:node_id_weight = ad_node.strip().split(":")node_id = node_id_weight[0]node_weight = node_id_weight[1]if vector_dict[node_id] not in label_check:label_check[vector_dict[node_id]] = float(node_weight)else:label_check[vector_dict[node_id]] += float(node_weight)#print label_checksort_list = sorted(label_check.items(), key = lambda d: d[1], reverse=True)if node_label == sort_list[0][0]:continueelse:return 0return 1    def label_propagation(vector_dict, edge_dict_out, edge_dict_in):#rebuild edge_dictedge_dict = {}for node in vector_dict.iterkeys():out_list = edge_dict_out[node]in_list = edge_dict_in[node]#print "node:", node#print "out_list:", out_list#print "in_list:", in_list#print "------------------------------------------------"out_dict = {}for out_x in out_list:out_xs = out_x.strip().split(":")if out_xs[0] not in out_dict:out_dict[out_xs[0]] = float(out_xs[1])in_dict = {}for in_x in in_list:in_xs = in_x.strip().split(":")if in_xs[0] not in in_dict:in_dict[in_xs[0]] = float(in_xs[1])#print "out_dict:", out_dict#print "in_dict:", in_dictlast_list = []for x in out_dict.iterkeys():out_x = out_dict[x]in_x = 0.0if x in in_dict:in_x = in_dict.pop(x)result = out_x + 0.5 * in_xlast_list.append(x + ":" + str(result))if not in_dict:for x in in_dict.iterkeys():in_x = in_dict[x]result = 0.5 * in_xlast_list.append(x + ":" + str(result))#print "last_list:", last_listif node not in edge_dict:edge_dict[node] = last_list#initial, let every vector belongs to a communityt = 0#for every node in a random orderwhile True:if (check(vector_dict, edge_dict) == 0):t = t+1print "----------------------------------------"print "iteration: ", tfor node in vector_dict.keys():adjacency_node_list = edge_dict[node]vector_dict[node] = get_max_community_label(vector_dict, adjacency_node_list)print vector_dictelse:breakreturn vector_dictif __name__ == "__main__":vector_dict, edge_dict_out, edge_dict_in = loadData("./cd_data.txt")print vector_dictprint edge_dict_outprint edge_dict_in#print "original community: ", vector_dictvec_new = label_propagation(vector_dict, edge_dict_out, edge_dict_in)print "---------------------------------------------------------"print "the final result: "for key in vec_new.keys():print str(key) + " ---> " + str(vec_new[key])

最终的结果:

这里写图片描述

程序和数据的github地址

这篇关于##单机版Python##社团划分——有向图的Label Propagation算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967676

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详