##单机版Python##社团划分——有向图的Label Propagation算法

2024-05-07 14:58

本文主要是介绍##单机版Python##社团划分——有向图的Label Propagation算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在博文社区划分——Label Propagation中,介绍了Label Propagation社区划分算法的基本原理,基本的Label Propagation算法是针对无向图的社区划分算法。

一、基本Label Propagation算法原理

对于网络中的每一个节点,在初始阶段,Label Propagation算法对每一个节点一个唯一的标签,在每一个迭代的过程中,每一个节点根据与其相连的节点所属的标签改变自己的标签,更改的原则是选择与其相连的节点中所属标签最多的社区标签为自己的社区标签,这便是标签传播的含义。随着社区标签的不断传播,最终紧密连接的节点将有共同的标签。

其中,标签的异步更新方式如下:

                                       Cx(t)=f(Cxi1(t),,Cxim(t),Cxi(m+1)(t1),,     Cxik(t1))

Label Propagation算法的过程如下:

  • 对网络中的每一节点初始化其所属社区标签,如对于节点x,初始化其社区标签为Cx(0)=x
  • 设置代数t
  • 对于网络中的节点设置其遍历顺序和节点的集合X
  • 对于每一个节点xX,令Cx(t)=f(Cxi1(t),,Cxim(t),Cxi(m+1)(t1),,Cxik(t1))
  • 判断是否可以迭代结束,如果否,则设置t=t+1,重新遍历。

二、有向图的Label Propagation算法

1、有向图

有向图是指图中的边是带有方向的图。对于有向图,每两个节点之间的边的条数是两条,分别为流出的边和流入的边,其流出边的总数为出度,流入边的总数为入度,如下图的有向图:

这里写图片描述
(图片来自百度百科)

对于节点5,其出度为2,入度也为2。对于更多的有向图的知识,可参阅相关图论的书。

2、对于Label Propagation算法的修正

要使得Label Propagation算法能够求解有向图的社区划分,问题即变为如何将有向图转换成无向图。即如何定义有向图中两个节点之间的边的权重。对于这个问题,设计了如下的公式:

wi,j=αλi,j+βλj,i

其中wi,j表示的是节点j对于节点i的权重,λi,j表示的是节点i到节点j的权重,λj,i表示的是节点j到节点i的权重。通过参数α和参数β可以调节不同的权重比例。

通过如上的办法将有向图的Label Propagation算法转换成无向图的Label Propagation算法进行求解。

三、实验

对于如下的数据:

0   2   1
2   0   2
0   3   2
3   0   1
0   4   3
4   0   1
0   5   2
5   0   1
1   2   3
2   1   1
1   4   5
4   1   2
1   7   1
7   1   4
2   4   2
4   2   2
2   5   9
5   2   7
2   6   1
6   2   4
3   7   1
7   3   5
4   10  1
10  4   4
5   7   1
7   5   2
5   11  1
11  5   2
6   7   3
7   6   7
6   11  5
11  6   2
8   9   1
9   8   6
8   10  4
10  8   2
8   11  2
11  8   1
8   14  5
14  8   3
8   15  8
15  8   5
9   12  2
12  9   1
9   14  1
14  9   2
10  11  10
11  10  1
10  12  2
12  10  3
10  13  9
13  10  8
10  14  8
14  10  7
11  13  1
13  11  4

程序源码如下:

#####################################
# Author:zhaozhiyong
# Date:20160602
# Fun:Label Propagation
#####################################
import stringdef loadData(filePath):f = open(filePath)vector_dict = {}edge_dict_out = {}#outedge_dict_in = {}#infor line in f.readlines():lines = line.strip().split("\t")if lines[0] not in vector_dict:vector_dict[lines[0]] = string.atoi(lines[0])if lines[1] not in vector_dict:vector_dict[lines[1]] = string.atoi(lines[1])if lines[0] not in edge_dict_out:edge_list = []if len(lines) == 3:edge_list.append(lines[1] + ":" + lines[2])edge_dict_out[lines[0]] = edge_listelse:edge_list = edge_dict_out[lines[0]]if len(lines) == 3:edge_list.append(lines[1] + ":" + lines[2])edge_dict_out[lines[0]] = edge_listif lines[1] not in edge_dict_in:edge_list = []if len(lines) == 3:edge_list.append(lines[0] + ":" + lines[2])edge_dict_in[lines[1]] = edge_listelse:edge_list = edge_dict_in[lines[1]]if len(lines) == 3:edge_list.append(lines[0] + ":" + lines[2])edge_dict_in[lines[1]] = edge_listf.close()return vector_dict, edge_dict_out, edge_dict_indef get_max_community_label(vector_dict, adjacency_node_list):label_dict = {}# generate the label_dictfor node in adjacency_node_list:node_id_weight = node.strip().split(":")node_id = node_id_weight[0]node_weight = float(node_id_weight[1])if vector_dict[node_id] not in label_dict:label_dict[vector_dict[node_id]] = node_weightelse:label_dict[vector_dict[node_id]] += node_weight# find the max labelsort_list = sorted(label_dict.items(), key = lambda d: d[1], reverse=True)return sort_list[0][0]def check(vector_dict, edge_dict):#for every nodefor node in vector_dict.keys():adjacency_node_list = edge_dict[node]node_label = vector_dict[node]#suject to label_check = {}for ad_node in adjacency_node_list:node_id_weight = ad_node.strip().split(":")node_id = node_id_weight[0]node_weight = node_id_weight[1]if vector_dict[node_id] not in label_check:label_check[vector_dict[node_id]] = float(node_weight)else:label_check[vector_dict[node_id]] += float(node_weight)#print label_checksort_list = sorted(label_check.items(), key = lambda d: d[1], reverse=True)if node_label == sort_list[0][0]:continueelse:return 0return 1    def label_propagation(vector_dict, edge_dict_out, edge_dict_in):#rebuild edge_dictedge_dict = {}for node in vector_dict.iterkeys():out_list = edge_dict_out[node]in_list = edge_dict_in[node]#print "node:", node#print "out_list:", out_list#print "in_list:", in_list#print "------------------------------------------------"out_dict = {}for out_x in out_list:out_xs = out_x.strip().split(":")if out_xs[0] not in out_dict:out_dict[out_xs[0]] = float(out_xs[1])in_dict = {}for in_x in in_list:in_xs = in_x.strip().split(":")if in_xs[0] not in in_dict:in_dict[in_xs[0]] = float(in_xs[1])#print "out_dict:", out_dict#print "in_dict:", in_dictlast_list = []for x in out_dict.iterkeys():out_x = out_dict[x]in_x = 0.0if x in in_dict:in_x = in_dict.pop(x)result = out_x + 0.5 * in_xlast_list.append(x + ":" + str(result))if not in_dict:for x in in_dict.iterkeys():in_x = in_dict[x]result = 0.5 * in_xlast_list.append(x + ":" + str(result))#print "last_list:", last_listif node not in edge_dict:edge_dict[node] = last_list#initial, let every vector belongs to a communityt = 0#for every node in a random orderwhile True:if (check(vector_dict, edge_dict) == 0):t = t+1print "----------------------------------------"print "iteration: ", tfor node in vector_dict.keys():adjacency_node_list = edge_dict[node]vector_dict[node] = get_max_community_label(vector_dict, adjacency_node_list)print vector_dictelse:breakreturn vector_dictif __name__ == "__main__":vector_dict, edge_dict_out, edge_dict_in = loadData("./cd_data.txt")print vector_dictprint edge_dict_outprint edge_dict_in#print "original community: ", vector_dictvec_new = label_propagation(vector_dict, edge_dict_out, edge_dict_in)print "---------------------------------------------------------"print "the final result: "for key in vec_new.keys():print str(key) + " ---> " + str(vec_new[key])

最终的结果:

这里写图片描述

程序和数据的github地址

这篇关于##单机版Python##社团划分——有向图的Label Propagation算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967676

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数