重点解码效果总结#####论文阅读——《Towards a Human-like Open-Domain Chatbot》

本文主要是介绍重点解码效果总结#####论文阅读——《Towards a Human-like Open-Domain Chatbot》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Introduction

开放的chatbot API总结

  • cleverbot API: https://www.cleverbot.com/api/
    • https://github.com/plasticuproject/cleverbotfree
  • xiaobing: https://www.msxiaobing.com/
  • mitsuku: https://www.pandorabots.com/mitsuku/
    • https://github.com/hanwenzhu/mitsuku-api

主要贡献

  • 模型架构:Evolved Transformer
    • 模型输入:多轮对话(最多7轮)
    • 模型输出:回复
    • 最佳模型:2.6B参数,10.2PPL,8K BPE subword vocabulary, 训练数据40B words
  • 评测指标
    • PPL
    • SSA(Sensibleness and Specificity Average)用来评估
      • whether make sense
      • whether specific
    • 人工评测使用static(1477个多轮对话)和interactive(想说啥就说啥)两种数据集,发现SSA和PPL在这两个数据集上高度相关
    • 模型在评测集的表现:
      • 0.72的SSA
      • 经过filtering mechanism 和 tuned decoding后有0.79的SSA,相比于人提供的0.86SSA的回复已经很接近了
  • 方法的局限性
    • 评测数据集的局限性,不能解决所有领域的问题

对话机器人的评价

人工进行评测时的参考标准

  • Sensibleness
    • common sense
    • logical coherence
    • consistency
    • 人工评测时对于可打的标签:confusing, illogical, out of context, factually wrong, make sense
    • 缺陷:对于安全的回答,如I don’t know,无法区分
  • Specificity
    • A: I love tennis. B: That’s nice 应该被标记为not specific,如果 B:Me too, I can’t get enough of Roger Federer!则被标记为specific
    • 已经被标记为not sensible的直接标记为not specific
  • SSA
    • 可以使用Sensibleness和Specificity标记在所有responses的比例来作为参考标准
    • 使用SSA将Sensibleness和Specificity的比例进行了结合

可进行对比的几个开源chatbot框架

  • 基于RNN:https://github.com/lukalabs/cakechat
  • 基于Transformer: https://github.com/microsoft/DialoGPT
    • 762M参数的模型效果更好一些
    • dialogpt没有公开其解码和MMI-reranking的过程,gpt2bot实现了解码:https://github.com/polakowo/gpt2bot
    • 附加一个中文的基于DialoGPT开发的闲聊模型
      • https://github.com/yangjianxin1/GPT2-chitchat
      • https://blog.csdn.net/kingsonyoung/article/details/103803067

构建静态评测集

  • 从单轮开始:http://ai.stanford.edu/~quocle/QAresults.pdf
  • 增加一些个性化问题,如:Do you like cats?
    • A: Do you like movies?; B: Yeah. I like sci-fi mostly; A: Really? Which is your favorite?期待I love Back to the Future这样的回答,对于I don’t like movies这样的回复应标记为not sensible

进行动态评测

  • 机器人以Hi开始,评测人员自由与bot对话,并对每一个bot的回复进行评测。每一个对话至少14轮,至多28轮。

Meena Chatbot

训练数据

  • 来源于public social media
  • 清洗流程
    • 去掉 subword 数目<=2 或 subword 数目 >= 128
    • 去掉 字母比例<0.7
    • 去掉 包含URL
    • 去掉 作者名字bot
    • 去掉 出现100次以上
    • 去掉 跟上文n-gram重复比例过高
    • 去掉 敏感句子
    • 去掉 括号中内容
    • 当一个句子被删除时,则上文全部被删除
  • 共清洗出867M的(context, response)对
  • 使用sentence piece进行BPE分词,得到8K的BPE vocab
  • 最终语料包含341GB的语料(40B word)

模型框架

  • Evolved Transformer
    • 2.6B parameter
    • 1 ET encoder + 13 ET decoder
  • 最大的模型可达到10.2的PPL
  • 最大的传统Transformer模型(32层decoder)可达到10.7的PPL
  • hidden size: 2560
  • attention head: 32
  • 共享编码、解码、softmax的embedding
  • 编码、解码最长是128

训练细节

  • 使用Adafactor optimizer,初始学习率0.01,在前10k step保持不变,使用inverse square root of the number of steps进行衰减
  • 使用https://github.com/tensorflow/tensor2tensor代码进行训练

解码细节

  • 为了避免产生乏味的回复,可以使用多种方法进行解码
    • reranking
    • 基于profiles, topics, and styles
    • 强化学习
    • 变分自编吗
  • 当PPL足够小时,可以使用sample-and-rank策略进行解码
    • 使用temperature T随机产生N个独立的候选

      • T=1产生不经过修正的分布
      • T越大,越容易产生不常见的词,如相关的实体名词,但可能产生错误的词
      • T越小,越容易产生常见的词,如冠词或介词,虽然安全但不specific
      • 解释1
温度是神经网络的超参数,用于在应用softmax之前通过缩放对数来控制预测的随机性。 例如,在TensorFlow的LSTM中,温度代表在计算softmax之前将logit除以多少。当温度为1时,我们直接在logits(较早层的未缩放输出)上计算softmax,并使用温度为0.6的模型在logits/0.6上计算softmax,从而得出较大的值。 在更大的值上执行softmax可使LSTM 更加自信 (需要较少的输入来激活输出层),但在其样本中也更加保守 (从不太可能的候选样本中进行抽样的可能性较小)。 使用较高的温度会在各个类上产生较软的概率分布,并使RNN更容易被样本“激发”,从而导致更多的多样性和更多的错误 。softmax函数通过确保网络输出在每个时间步长都在零到一之间,基于其指数值对候选网络的每次迭代进行归一化。因此,温度增加了对低概率候选者的敏感
      • 解释2
当T很大时,即趋于正无穷时,所有的激活值对应的激活概率趋近于相同(激活概率差异性较小);而当T很低时,即趋于0时,不同的激活值对应的激活概率差异也就越大。
    • 发现使用beam-search解码会产生重复且无趣的回复,使用sample-and-rank产生的回复会丰富一些
    • 使用N=20,T=0.88
  • response score的计算:logP/T,P是response的likelihood,T是token的个数
  • 解码时增加detect cross turn repetitions
    • 当两个turn的n-gram重复超过一定比例时,则从候选中删除
  • 增加一个分类层,用来过滤掉敏感回复

结论

SSA和PPL是相关的

  • 基本呈线性关系

效果的比较

  • 小冰:呈现出个性化的回复,但有时也会无意义,且经常回复得太平常。小冰另一个特点就是具有同情心,可以在以后的评价指标中考虑这一点。小冰有near-human-level engagingness但not very close to human-level humanness,因此在我们的评测指标上SSA不高。
  • mitsuku:56%SSA(72%sensibility 40%specifity), 网站上的对话并不是它参加图灵测试的版本
  • DialoGPT:48%SSA(57%sensibility 49%specifity)
  • CleverBot:在interactive评测表现比static上稍微好一些(56% interactive SSA,44% static SSA)。发现cleverbot更擅长将话题引入到它更擅长的领域中,缺少personality
  • Meena:base(72% SSA),full(79% SSA)

这篇关于重点解码效果总结#####论文阅读——《Towards a Human-like Open-Domain Chatbot》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967525

相关文章

Python中实现进度条的多种方法总结

《Python中实现进度条的多种方法总结》在Python编程中,进度条是一个非常有用的功能,它能让用户直观地了解任务的进度,提升用户体验,本文将介绍几种在Python中实现进度条的常用方法,并通过代码... 目录一、简单的打印方式二、使用tqdm库三、使用alive-progress库四、使用progres

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

React实现原生APP切换效果

《React实现原生APP切换效果》最近需要使用Hybrid的方式开发一个APP,交互和原生APP相似并且需要IM通信,本文给大家介绍了使用React实现原生APP切换效果,文中通过代码示例讲解的非常... 目录背景需求概览技术栈实现步骤根据 react-router-dom 文档配置好路由添加过渡动画使用

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

使用Python实现生命之轮Wheel of life效果

《使用Python实现生命之轮Wheeloflife效果》生命之轮Wheeloflife这一概念最初由SuccessMotivation®Institute,Inc.的创始人PaulJ.Meyer... 最近看一个生命之轮的视频,让我们珍惜时间,因为一生是有限的。使用python创建生命倒计时图表,珍惜时间

通过C#和RTSPClient实现简易音视频解码功能

《通过C#和RTSPClient实现简易音视频解码功能》在多媒体应用中,实时传输协议(RTSP)用于流媒体服务,特别是音视频监控系统,通过C#和RTSPClient库,可以轻松实现简易的音视... 目录前言正文关键特性解决方案实现步骤示例代码总结最后前言在多媒体应用中,实时传输协议(RTSP)用于流媒体服

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;