Python金融学基础——夏普比率(Sharpe-ratio)和资产组合价值(portfolio-value)

本文主要是介绍Python金融学基础——夏普比率(Sharpe-ratio)和资产组合价值(portfolio-value),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面的课程主要是在研究Pandas的时序分析实现,以及利用statsmodel对时序数据进行ARIMA以及有权重的ARIMA模型的建模,并尝试预测未来的走向。从这节课开始,我们正式进入Python金融学基础,会介绍一些金融学的概念和实现方法。

本节课主要以苹果、亚马逊、IBM、思科以及沃尔玛的股票市场价格为原始数据,分析这几只股票的资产组合的计算方式和夏普比率的计算,其中会涉及到日收益率、累积收益率的计算等等。
本文主要流程:

一、基本概念

1.1 资产组合

我们的资产往往不是单一的,我们会同时购买好几支股票或者基金,这样总资产的收益其实是每个资产的按照比例的权重加和结果,并且如果购买的资产之间具有对冲,我们还能够利用这点来降低风险,减少总资产损失的不确定性。比如王婆一个儿子卖伞和一个儿子卖鞋的故事就是这样,只要天放晴,卖鞋儿子生意好,但是伞卖不出去;同理,天下雨的时候卖伞的儿子生意好,鞋子卖不出去。其实天气就是波动,或说在这里就是风险,但是王婆家两个儿子卖的东西其实有对冲的作用,也就是不管是天晴天阴,家里都会有生意,因此就降低了风险可能带来的损失。这就是一个资产组合。

1.2 夏普比率

夏普指数是一个用于计算根据风险调整过的回报率的测量指标,说白了,就是说我们只要做投资,就肯定会有风险,但在相同的回报率下,风险有可能不一样,正常人在这个时候肯定都会选择风险小的,那么我们需要一个指标来评判在相同单位风险上,哪个收益大?或者说在收益相同的情况下,哪些风险不必要冒?所以夏普比率相当于是用风险把收益率给平均化了,放到太阳底下去看看每份相同的风险下收益率的大小是多少。
计算公式如下:
Sharpe Ratio=(Mean of portfolio return - Risk-free return) / standard deviation of portfolio return
这个公式Mean of portfolio return就是投资组合的收益率的平均值,risk-free return就是当地没有风险的回报率,也就是放在银行当中的回报率,比如美国的银行利率就接近于0,standard deviation of portfolio return就是投资组合的收益率的标准偏差。
以上是原始的夏普比率的计算方法,实际上对于固定时间内的夏普比率还得乘上一个k值。
对于不同采样频率的k值情况:
- Daily=sqrt(252)(最小粒度是按天计)
- Weekly=sqrt(52)(最小粒度是按星期计)
- Monthly=sqrt(12)(最小粒度是按月计)
年利率和日利率的转换:

二、读取数据

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#%matplotlib inline
aapl=pd.read_csv('AAPL_CLOSE',index_col='Date',parse_dates=True)
cisco=pd.read_csv('CISCO_CLOSE',index_col='Date',parse_dates=True)
ibm=pd.read_csv('IBM_CLOSE',index_col='Date',parse_dates=True)
amzn=pd.read_csv('AMZN_CLOSE',index_col='Date',parse_dates=True)

2.1 归一化收盘价格

也就是求每天的收盘价格相对于初始第一天的价格的百分率。

for stock in [aapl, cisco, ibm, amzn]:stock['normalized_price']=stock['Adj. Close']/stock['Adj. Close'].iloc[0]
aapl.head()

2.2 资产分配

现在假定我们四种股票都买了,并且是按照一定的权重去买,现在我们需要计算一下每天的收益率总和。
- 30% in Apple
- 20% in Google/Alphabet
- 40% in Amazon
- 10% in IBM

做法是把每只股票的收益率乘以对应的权重,把所有经过权重相乘后的收益率之和加起来就是总的收益率。

for stock, weight in zip([aapl, cisco, ibm, amzn],[0.3, 0.2, 0.1, 0.4]):stock['weighted daily return']=stock['normalized_price']*weight
aapl.head()

大概可以了,然后我们把对应的经过权重计算的归一日回报率全部都整合到一张表当中。

total_stock=pd.concat([aapl['weighted daily return'], cisco['weighted daily return'], ibm['weighted daily return'], amzn['weighted daily return']],axis=1)
total_stock.columns=['aapl', 'cisco', 'ibm', 'amzn']
total_stock.head()

2.2 投资

然后假设我们投资10000元,那么就在上面回报率的基础上乘以10000。

total_invest=total_stock*10000
total_invest.head()

total_invest['Total Pos']=total_invest.sum(axis=1)
total_invest.head()

然后我们绘制下每天的总收益.

plt.style.use('ggplot')
total_invest['Total Pos'].plot(label='Total Pos')
plt.legend(loc='best')
plt.title('Total Portfolio Value')

我们绘制一下除了总资产以外的其他单只股票的收益情况

total_invest.drop('Total Pos',axis=1).plot(figsize=(8,4))

三、资产的统计学值

3.1 日回报率

total_invest['daily return']=total_invest['Total Pos'].pct_change(1)
total_invest['daily return'].head()

3.2 累积回报率

计算方法是最后一天与一开始第一天的变化百分比,相当于是增加了多少百分比。

cumulative_return=total_invest['Total Pos'].iloc[-1]/total_invest['Total Pos'].iloc[0]-1
print cumulative_return

3.3 平均日回报率

也就是对日回报率做平均计算

total_invest['daily return'].mean()

3.4 日回报率的标准差

total_invest['daily return'].std()

total_invest['daily return'].plot(kind='kde')

四、夏普比率

接下来我们计算一下总资产的夏普比率,也就是拿总资产日回报率的均值除以日回报率的标准差。之后由于我们这里的粒度是以天算的,所以要乘以sqrt(252),252代表252天

SR=total_invest['daily return'].mean()/total_invest['daily return'].std()
SR

import numpy as np
ASR=np.sqrt(252)*SR
ASR

最后我们绘制一下各个股票的收盘价分布情况

for stock in [aapl, cisco, ibm, amzn]:stock['Adj. Close'].pct_change(1).plot(kind='kde')

这篇关于Python金融学基础——夏普比率(Sharpe-ratio)和资产组合价值(portfolio-value)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/967512

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2