Vitis HLS 学习笔记--AXI_STREAM_TO_MASTER

2024-05-07 08:44

本文主要是介绍Vitis HLS 学习笔记--AXI_STREAM_TO_MASTER,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. 简介

2. 示例

2.1 示例功能介绍

2.2 示例代码

2.3 顶层函数解释

2.4 综合报告(HW Interfaces)

2.5 关于TKEEP和TSTRB

2.6 综合报告(SW I/O Information)

3. 总结


1. 简介

本文通过“<Examples>/Interface/Streaming/axi_stream_to_master/”示例,展示了如何利用 Vitis HLS 工具,将输入的 AXI Stream 格式的数据流转换为并行存储数据,并通过 AXI Master 接口写入到存储器中。

AXI Stream 接口:是一种轻量级的、无协议的、点对点的数据传输接口,常用于在 FPGA 内部或 FPGA 与外部设备之间传输大量数据。它包括一个数据通道和一个控制信号,通过这两个通道传输数据和标记数据包结束。
AXI Master 接口:是一种高级别的存储器接口,用于 FPGA 设备与外部存储器之间的数据传输。它包括数据通道、地址通道、控制信号等,可以支持高性能的数据读写操作。

2. 示例

2.1 示例功能介绍

本示例包含三个函数:

  • getinstream 函数

从输入的 AXI Stream 数据流中读取数据,并将其转换为 data 结构后发送到输出流中。在达到最大计数或读取到最后一个数据包时,将计数值发送到输出计数流中。这个函数主要利用了 AXI Stream 接口进行数据的传输和标记数据包结束。

  • streamtoparallelwithburst 函数

从输入的 AXI Stream 数据流和计数流中读取数据,并将数据写入到输出的 AXI Master 接口中。这个函数主要利用了 AXI Master 接口进行数据的存储,支持数据的突发传输。

  • example 函数

顶层函数,将这两个操作结合起来,首先将输入流转换为数据流和计数流,然后将数据流传递给 streamtoparallelwithburst 函数进行数据存储操作。最终实现了从 AXI Stream 数据流到 AXI Master 存储器接口的数据处理流程。

2.2 示例代码

#include "ap_axi_sdata.h"
#include "ap_int.h"
#include "hls_stream.h"typedef ap_axiu<64, 0, 0, 0> trans_pkt;// Expects max bandwidth at 64 beats burst (for 64-bit data)
static constexpr int MAX_BURST_LENGTH = 64;
static constexpr int BUFFER_FACTOR = 64;// Buffer sizes
static constexpr int DATA_DEPTH = MAX_BURST_LENGTH * BUFFER_FACTOR;
static constexpr int COUNT_DEPTH = BUFFER_FACTOR;struct data {ap_int<64> data_filed;ap_int<1> last;
};/// Reads from in_stream and in_counts, Write to out_memory
void streamtoparallelwithburst(hls::stream<data>& in_stream,hls::stream<int>& in_counts,ap_uint<64>* out_memory) {data in_val;do {int count = in_counts.read();for (int i = 0; i < count; ++i) {
#pragma HLS PIPELINEin_val = in_stream.read();out_memory[i] = in_val.data_filed;}out_memory += count;} while (!in_val.last);
}void getinstream(hls::stream<trans_pkt>& in_stream,hls::stream<data>& out_stream, hls::stream<int>& out_counts) {int count = 0;trans_pkt in_val;do {
#pragma HLS PIPELINEin_val = in_stream.read();data out_val = {in_val.data, in_val.last};out_stream.write(out_val);count++;if (count >= MAX_BURST_LENGTH || in_val.last) {out_counts.write(count);count = 0;}} while (!in_val.last);
}void example(hls::stream<trans_pkt>& inStreamTop, ap_uint<64> outTop[1024]) {
#pragma HLS INTERFACE axis register_mode = both register port = inStreamTop
#pragma HLS INTERFACE m_axi max_write_burst_length = 256 latency = 10 depth =  1024 bundle = gmem0 port = outTop
#pragma HLS INTERFACE s_axilite port = outTop bundle = control
#pragma HLS INTERFACE s_axilite port = return bundle = control#pragma HLS DATAFLOWhls::stream<data, DATA_DEPTH> buf;hls::stream<int, COUNT_DEPTH> count;getinstream(inStreamTop, buf, count);streamtoparallelwithburst(buf, count, outTop);
}

2.3 顶层函数解释

顶层函数 example 共有两个参数:

  • inStreamTop:这是一个输入参数,类型为 hls::stream<trans_pkt>&,表示一个 AXI Stream 接口的数据流。该参数用于传递输入的数据流,其中 trans_pkt 是一个结构体类型,表示一个 AXI Stream 格式的数据包,包含64位的数据字段和一个标记最后一个数据包的信号。
  • outTop:这是一个输出参数,类型为 ap_uint<64> outTop[1024],表示一个 AXI Master 接口的存储器。该参数用于指定存储数据的地址,数据将被写入到这个地址指定的存储器中。这里使用了 ap_uint<64> 类型的数组,长度为1024,表示存储器的容量为1024个64位的数据。

编译器指令,只介绍其中第一个,其余的在之前的文章已有分析。

#pragma HLS INTERFACE axis register_mode = both register port = inStreamTop

  • axis:这表示我们正在定义一个AXI Stream接口。
  • register_mode = both:这指定了数据流的寄存器模式。在这里,both表示数据流的输入和输出都使用寄存器。
  • register:表示数据端口将使用寄存器进行数据缓存。
  • port = inStreamTop:表示将指定这个接口指令应用于名为 inStreamTop 的输入端口。这个端口将被识别为 AXI Stream 接口,从而在 HLS 综合过程中正确处理数据流。

2.4 综合报告(HW Interfaces)

================================================================
== HW Interfaces
================================================================
* M_AXI
+-------------+------------+---------------+---------+--------+----------+-----------+--------------+--------------+-------------+-------------+
| Interface   | Data Width | Address Width | Latency | Offset | Register | Max Widen | Max Read     | Max Write    | Num Read    | Num Write   |
|             | (SW->HW)   |               |         |        |          | Bitwidth  | Burst Length | Burst Length | Outstanding | Outstanding |
+-------------+------------+---------------+---------+--------+----------+-----------+--------------+--------------+-------------+-------------+
| m_axi_gmem0 | 64 -> 64   | 64            | 10      | slave  | 0        | 0         | 16           | 256          | 16          | 16          |
+-------------+------------+---------------+---------+--------+----------+-----------+--------------+--------------+-------------+-------------+* S_AXILITE Interfaces
+---------------+------------+---------------+--------+----------+
| Interface     | Data Width | Address Width | Offset | Register |
+---------------+------------+---------------+--------+----------+
| s_axi_control | 32         | 5             | 16     | 0        |
+---------------+------------+---------------+--------+----------+* S_AXILITE Registers
+---------------+----------+--------+-------+--------+----------------------------------+----------------------------------------------------------------------+
| Interface     | Register | Offset | Width | Access | Description                      | Bit Fields                                                           |
+---------------+----------+--------+-------+--------+----------------------------------+----------------------------------------------------------------------+
| s_axi_control | CTRL     | 0x00   | 32    | RW     | Control signals                  | 0=AP_START 1=AP_DONE 2=AP_IDLE 3=AP_READY 7=AUTO_RESTART 9=INTERRUPT |
| s_axi_control | GIER     | 0x04   | 32    | RW     | Global Interrupt Enable Register | 0=Enable                                                             |
| s_axi_control | IP_IER   | 0x08   | 32    | RW     | IP Interrupt Enable Register     | 0=CHAN0_INT_EN 1=CHAN1_INT_EN                                        |
| s_axi_control | IP_ISR   | 0x0c   | 32    | RW     | IP Interrupt Status Register     | 0=CHAN0_INT_ST 1=CHAN1_INT_ST                                        |
| s_axi_control | outTop_1 | 0x10   | 32    | W      | Data signal of outTop            |                                                                      |
| s_axi_control | outTop_2 | 0x14   | 32    | W      | Data signal of outTop            |                                                                      |
+---------------+----------+--------+-------+--------+----------------------------------+----------------------------------------------------------------------+* AXIS
+-------------+---------------+-------+-------+-------+--------+-------+--------+
| Interface   | Register Mode | TDATA | TKEEP | TLAST | TREADY | TSTRB | TVALID |
+-------------+---------------+-------+-------+-------+--------+-------+--------+
| inStreamTop | both          | 64    | 8     | 1     | 1      | 8     | 1      |
+-------------+---------------+-------+-------+-------+--------+-------+--------+* TOP LEVEL CONTROL
+-----------+------------+-----------+
| Interface | Type       | Ports     |
+-----------+------------+-----------+
| ap_clk    | clock      | ap_clk    |
| ap_rst_n  | reset      | ap_rst_n  |
| interrupt | interrupt  | interrupt |
| ap_ctrl   | ap_ctrl_hs |           |
+-----------+------------+-----------+

通过 AXIS 报告项,可以清楚的看到 axi stream 接口的构成:

* AXIS
+-------------+---------------+-------+-------+-------+--------+-------+--------+
| Interface   | Register Mode | TDATA | TKEEP | TLAST | TREADY | TSTRB | TVALID |
+-------------+---------------+-------+-------+-------+--------+-------+--------+
| inStreamTop | both          | 64    | 8     | 1     | 1      | 8     | 1      |
+-------------+---------------+-------+-------+-------+--------+-------+--------+
  • TDATA: 这是数据信号,用于传输实际的数据。在您的表格中,TDATA的宽度是64位。
  • TKEEP: 这是字节使能信号,每个位对应TDATA中的一个字节。如果TKEEP的某位是1,那么对应的TDATA字节是有效的;如果是0,则该字节无效。在您的表格中,TKEEP的宽度是8位,意味着可以独立控制TDATA中的每个字节。
  • TLAST: 这是一个标志信号,用于指示一次传输的最后一个数据包。当TLAST为1时,表示当前的TDATA是当前传输的最后一个数据包。
  • TREADY: 这是就绪信号,由接收方控制。当TREADY为1时,表示接收方准备好接收数据;当TREADY为0时,表示接收方未准备好接收数据。
  • TSTRB: 这是字节选通信号,与TKEEP类似,用于指示有效的数据字节。在您的表格中,TSTRB的宽度是8位。
  • TVALID: 这是有效信号,由发送方控制。当TVALID为1时,表示发送方正在发送有效的数据;当TVALID为0时,表示当前没有数据被发送。

这些信号共同工作,以确保数据能够可靠地在主设备和从设备之间传输。例如,数据传输只有在TVALID和TREADY都为1时才会发生,这确保了发送方和接收方都准备好进行数据交换。

2.5 关于TKEEP和TSTRB

TKEEP和TSTRB在AXI Stream接口中都是字节使能信号,但它们的用途略有不同。

  • TKEEP是用来指示哪些字节是有效的。如果TKEEP的某一位是1,那么对应的TDATA字节是有效的;如果是0,则该字节无效。这个信号通常用于数据包的开始和结束,以及中间的所有字节(如果TKEEP全部为1,则表示所有字节都是有效的)。
  • TSTRB也是一个字节使能信号,但它更多地用于指示数据的位置或时序。当TSTRB的某一位是1时,表示对应的TDATA字节在当前时刻是有效的。TSTRB可以用来传输空字节,即使TKEEP为高,TSTRB也可以为低,这意味着需要发送一个空字节。

在大多数情况下,只使用TKEEP信号,因为它可以满足大部分接口的需求。然而,在某些特定的应用中,可能会同时使用TKEEP和TSTRB来提供更精细的控制。

2.6 综合报告(SW I/O Information)

================================================================
== SW I/O Information
================================================================
* Top Function Arguments
+-------------+-----------+---------------------------------------------+
| Argument    | Direction | Datatype                                    |
+-------------+-----------+---------------------------------------------+
| inStreamTop | in        | stream<hls::axis<ap_uint<64>, 0, 0, 0>, 0>& |
| outTop      | out       | ap_uint<64>*                                |
+-------------+-----------+---------------------------------------------+* SW-to-HW Mapping
+-------------+---------------+-----------+----------+------------------------------------+
| Argument    | HW Interface  | HW Type   | HW Usage | HW Info                            |
+-------------+---------------+-----------+----------+------------------------------------+
| inStreamTop | inStreamTop   | interface |          |                                    |
| outTop      | m_axi_gmem0   | interface |          |                                    |
| outTop      | s_axi_control | register  | offset   | name=outTop_1 offset=0x10 range=32 |
| outTop      | s_axi_control | register  | offset   | name=outTop_2 offset=0x14 range=32 |
+-------------+---------------+-----------+----------+------------------------------------+

从 Top Function Arguments 可轻松分析参数类型和方向。

3. 总结

本文详细介绍了如何利用 Vitis HLS 工具将 AXI Stream 格式的数据流转换为并行存储数据,并通过 AXI Master 接口写入到存储器中。通过示例代码和编译器指令的解释,读者可以了解到 AXI Stream 接口和 AXI Master 接口的特点以及在 FPGA 设计中的应用。同时,本文还分析了示例中各个函数的功能和参数,以及综合报告中的重要信息。

 

这篇关于Vitis HLS 学习笔记--AXI_STREAM_TO_MASTER的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966867

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

Tolua使用笔记(上)

目录   1.准备工作 2.运行例子 01.HelloWorld:在C#中,创建和销毁Lua虚拟机 和 简单调用。 02.ScriptsFromFile:在C#中,对一个lua文件的执行调用 03.CallLuaFunction:在C#中,对lua函数的操作 04.AccessingLuaVariables:在C#中,对lua变量的操作 05.LuaCoroutine:在Lua中,

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在