java Stream操作转换方法

2025-01-20 04:50

本文主要是介绍java Stream操作转换方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《javaStream操作转换方法》文章总结了Java8中流(Stream)API的多种常用方法,包括创建流、过滤、遍历、分组、排序、去重、查找、匹配、转换、归约、打印日志、最大最小值、统计、连接、...

流创建

方法
集合Collection.stream/parllelStream
数组Arrays.stream
数字StreamIntStream/LongStream.range/rangeClosed/Random.inis/longs/doubles
自己创建stream.generate/iterate

1、list 转 map

工作中,我们经常遇到listmap的案例。Collectors.toMap就可以把一个list数组转成一个Map。代码如下:

public class TestLambda {
    public static void main(String[] args) {
        List<UserInfo> userInfoList = new ArrayList<>();
        userInfoList.add(new UserInfo(1L, "测试源码", 18));
        userInfoList.add(new UserInfo(2L, "程序员淘淘", 27));
        userInfoList.add(new UserInfo(2L, "打代码的淘淘", 26));
        /**
         *  list 转 map
         *  使用Collectors.toMap的时候,如果有可以重复会报错,所以需要加(k1, k2) -> k1
         *  (k1, k2) -> k1 表示,如果有重复的key,则保留第一个,舍弃第二个
         */
        Map<Long, UserInfo> userInfoMap = userInfoList.stream().collect(Collectors.toMap(UserInfo::getUserId, userInfo -> userInfo, (k1, k2) -> k1));
        userInfoMap.values().forEach(a->System.out.println(a.getUserName()));
    }
}

类似的,还有Collectors.toList()Collectors.toSet(),表示把对应的流转化为list或者Set

2、filter()过滤

从数组集合中,过滤掉不符合条件的元素,留下符合条件的元素。

List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "测试源码", 18));
userInfoList.add(new UserInfo(2L, "程序员淘淘", 27));
userInfoList.add(new UserInfo(3L, "打代码的淘淘", 26));
/**
 * filter 过滤,留下超过18岁的用户
 */
List<UserInfo> userInfoResultList = userInfoList.stream().filter(user -> user.getAge() > 18).collect(Collectors.toList());
userInfoResultList.forEach(a -> System.out.println(a.getUserName()));
//运行结果
程序员淘淘
打代码的淘淘

3、foreach遍历

foreach 遍历list,遍历map,真的很丝滑。

/**
 * forEach 遍历集合List列表
 */
List<String> userNameList = Arrays.asList("测试源码", "程序员淘淘", "艿艿");
userNameList.forEach(System.out::println);
HashMap<String, String> hashMap = new HashMap<>();
hashMap.put("号码你", "测试源码");
hashMap.put("职业", "程序员淘淘");
hashMap.put("昵称", "艿艿");
/**
 *  forEach 遍历集合Map
 */
hashMap.forEach((k, v) -> System.out.println(k + ":\t" + v));
//运行结果
测试源码
程序员淘淘
打代码的淘淘
职业: 程序员淘淘
号码你: 测试源码
昵称: 艿艿

4、groupingBy 分组

提到分组,相信大家都会想起SQLgroup by。我们经常需要一个List做分组操作。比如,按城市分组用户。在Java8之前,是这么实现的:

List<UserInfo> oChina编程riginUserInfoList = new ArrayList<>();
originUserInfoList.add(new UserInfo(1L, "测试源码", 18,"深圳"));
originUserInfoList.add(new UserInfo(3L, "打代码的淘淘", 26,"湛江"));
originUserInfoList.add(new UserInfo(2L, "程序员淘淘", 27,"深圳"));
Map<String, List<UserInfo>> result = new HashMap<>();
for (UserInfo userInfo : originUserInfoList) {
  String city = userInfo.getCity();
  List<UserInfo> userInfos = result.get(city);
  if (userInfos == null) {
      userInfos = new ArrayList<>();
      result.put(city, userInfos);
    }
  userInfos.add(userInfo);
}

而使用Java8groupingBy分组器,清爽无比:

Map<String, List<UserInfo>> result = originUserInfoList.stream()
.collect(Collectors.groupingBy(UserInfo::getCity));

5、sorted+Comparator 排序

工作中,排序的需求比较多,使用sorted+Comparator排序,真的很香。

List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "测试源码", 18));
userInfoList.add(new UserInfo(3L, "打代码的淘淘", 26));
userInfoList.add(new UserInfo(2L, "程序员淘淘", 27));
/**
 *  sorted + Comparator.comparing 排序列表,
 */
userInfoList = userInfoList.stream().sorted(Comparator.comparing(UserInfo::getAge)).collect(Collectors.toList());
userInfoList.forEach(a -> China编程System.out.println(a.toString()));
System.out.println("开始降序排序");
/**
 * 如果想降序排序,则可以使用加reversed()
 */
userInfoList = userInfoList.stream().sorted(Comparator.comparing(UserInfo::getAge).reversed()).collect(Collectors.toList());
userInfoList.forEach(a -> System.out.println(a.toString()));
//运行结果
UserInfo{userId=1, userName='测试源码', age=18}
UserInfo{userId=3, userName='打代码的淘淘', age=26}
UserInfo{userId=2, userName='程序员淘淘', age=27}
开始降序排序
UserInfo{userId=2, userName='程序员淘淘', age=27}
UserInfo{userId=3, userName='打代码的淘淘', age=26}
UserInfo{userId=1, userName='测试源码', age=18}
-=-----------------------------------------------------------------
privatepython static void test04(){
    // 按工资升序排序(自然排序)
    List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
            .collect(Collectors.toList());
    // 按工资倒序排序
    List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
            .map(Person::getName).collect(Collectors.toList());
    // 先按工资再按年龄升序排序
    List<String> newList3 = personList.stream()
            .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
            .collect(Collectors.toList());
    // 先按工资再按年龄自定义排序(降序)
    List<String> newList4 = personList.stream().sorted((p1, p2) -> {
        if (p1.getSalary() == p2.getSalary()) {
            return p2.getAge() - p1.getAge();
        } else {
            return p2.getSalary() - p1.getSalary();
        }
    }).map(Person::getName).collect(Collectors.toList());
    System.out.println("按工资升序排序:" + newList);
    System.out.println("按工资降序排序:" + newList2);
    System.out.println("先按工资再按年龄升序排序:" + newList3);
    System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
}

6、distinct去重

distinct可以去除重复的元素:

List<String> list = Arrays.asList("A", "B", "F", "A", "C");
List<String> temp = list.stream().distinct().collect(Collectors.toList());
temp.forEach(System.out::println);

7、findFirst返回第一个

findFirst 很多业务场景,我们只需要返回集合的第一个元素即可:

List<String> list = Arrays.asList("A", "B", "F", "A", "C");
list.stream().findFirst().ifPresent(System.out::println);

8、anyMatch 是否至少匹配一个元素

anyMatch 检查流是否包含至少一个满足给定谓词的元素。

Stream<String> stream = Stream.of("A", "B", "C", "D");
boolean match = stream.anyMatch(s -> s.contains("C"));
System.out.println(match);
//输出
true

9、allMatch 匹配所有元素

allMatch 检查流是否所有都满足给定谓词的元素。

Stream<String> stream = Stream.of("A", "B", "C", "D");
boolean match = stream.allMatch(s -> s.contains("C"));
System.out.println(match);
//输出
false

10、map 转换

map方法可以帮我们做元素转换,比如一个元素所有字母转化为大写,又或者把获取一个元素对象的某个属性,demo如下:

List<String> list = Arrays.asList("jay", "tianluo");
//转化为大写
List<String> upperCaselist = list.stream().map(String::toUpperCase).collect(Collectors.toList());
upperCaselist.forEach(System.out::println);

11、Reduce

Reduce可以合并流的元素,并生成一个值

int sum = Stream.of(1, 2, 3, 4).reduce(0, (a, b) -> a + b);
System.out.println(sum);
/**
 * 求Integer集合的元素之和、乘积和最大值
 *
 */
private static void test13() {
    List<Integer> list = Arrays.asList(1, 2, 3, 4);
    //求和
    Optional<Integer> reduce = list.stream().reduce((x,y) -> x+ y);
    System.out.println("求和:"+reduce);
    //求积
    Optional<Integer> reduce2 = list.stream().reduce((x,y) -> x * y);
    System.out.println("求积:"+reduce2);
    //求最大值
    Optional<Integer> reduce3 = list.stream().reduce((x,y) -> x>y?x:y);
    System.out.println("求最大值:"+reduce3);
}
/*
 * 求所有员工的工资之和和最高工资
 */
private static void test14() {
    initPerson();
    Optional<Integer> reduce = personList.stream().map(Person :: getSalary).reduce(Integer::sum);
    Optional<Integer> reduce2 = personList.stream().map(Person :: getSalary).reduce(Integer::max);
    System.out.println("工资之和:"+reduce);
    System.out.println("最高工资:"+reduce2);
}

12、peek 打印个日志

peek()方法是一个中间Stream操作,有时候我们可以使用peek来打印日志。

List<String> result = Stream.of("程序员淘淘", "测试源码", "打代码的淘淘")
            .filter(a -> a.contains("芋艿"))
            .peek(a -> System.out.println("关注号码你:" + a)).collect(Collectors.toList());
System.out.println(result);
//运行结果
关注号码你:程序员淘淘
关注号码你:测试源码
[程序员淘淘, 测试源码]

13、Max,Min 最大最小

使用lambda流求最大,最小值,非常方便。

List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "测试源码", 18));
userInfoList.add(new UserInfo(3L, "打代码的淘淘", 26));
userInfoList.add(new UserInfo(2L, "程序员淘淘", 27));
Optional<UserInfo> maxAgeUserInfoOpt = userInfoList.stream().max(Comparator.comparing(UserInfo::getAge));
maxAgeUserInfoOpt.ifPresent(userInfo -> System.out.println("max age user:" + userInfo));
Optional<UserInfo> minAgeUserInfoOpt = userInfoList.stream().min(Comparator.comparing(UserInfo::getAge));
minAgeUserInfoOpt.ifPresent(userInfo -> System.out.println("min age user:" + userInfo));
//运行结果
max age user:UserInfo{userId=2, userName='程序员淘淘', age=27}
min age user:UserInfo{userId=1, userName='测试源码', age=18}

14、count 统计

一般count()表示获取流数据元素总数。

List<UserInfo> userInfoList = new ArrayList<>();
userInfoList.add(new UserInfo(1L, "测试源码", 18));
userInfoList.add(new UserInfo(3L, "打代码的淘淘", 26));
userInfoList.add(new UserInfo(2L, "程序员淘淘", 27));
long count = userInfoList.stream().filter(user -> user.getAge() > 18).count();
System.out.println("大于18岁的用户:" + count);
//输出
大于18岁的用户:2
/**
 * 统计员工人数、平均工资、工资总额、最高工资
 */
private static void test01(){
    //统计员工人数
    Long count = personList.stream().collect(Collectors.counting());
    //求平均工资
    Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
    //求最高工资
    Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
    //求工资之和
    Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
    //一次性统计所有信息
    DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));
    System.out.println("统计员工人数:"+count);
    System.out.println("求平均工资:"+average);
    System.out.println("求最高工资:"+max);
    System.out.println("求工资之和:"+sum);
    System.out.println("一次性统计所有信息:"+collect);
}

15、提取/组合

流也可以进行合并、去重、限制、跳过等操作。

private static void test05(){
    String[] arr1 = { "a", "b", "c", "d" };
    String[] arr2 = { "d", "e", "f", "g" };
    Stream<String> stream1 = Stream.of(arr1);
    Stream<String> stream2 = Stream.of(arr2);
    // concat:合并两个流 distinct:去重
    List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
    // limit:限制从流中获得前n个数据
    List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
    // skip:跳过前n个数据
    List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());
    System.out.println("流合并:" + newList);
    System.out.println("limit:" + collect);
    System.out.println("skip:" + collect2);
}

16、连接joining

joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

List<Integer> list = Arrays.asList(7, 6, 9, 3, 10, 2, 1);
String collect = list.stream().map(String::valueOf).collect(Collectors.joining(","));
System.out.println(collect);
7,6,9,3,10,2,1

17、常用函数式接口

其实lambda离不开函数式接口,我们来看下JDK8常用的几个函数式接口:

  • Function<T, R>(转换型): 接受一个输入参数,返回一个结果
  • Consumer<Tpython> (消费型): 接收一个输入参数,并且无返回操作
  • Predicate<T> (判断型): 接收一个输入参数,并且返回布尔值结果
  • Supplier<T> (供编程给型): 无参数,返回结果

Function<T, R> 是一个功能转换型的接口,可以把将一种类型的数据转化为另外一种类型的数据

    private void testFunction() {
        //获取每个字符串的长度,并且返回
        Function<String, Integer> function = String::length;
        Stream<String> stream = Stream.of("程序员淘淘", "测试源码", "打代码的淘淘");
        Stream<Integer> resultStream = stream.map(function);
        resultStream.forEach(System.out::println);
    }

Consumer<T>是一个消费性接口,通过传入参数,并且无返回的操作

   private void testComsumer() {
        //获取每个字符串的长度,并且返回
        Consumer<String> comsumer = System.out::println;
        Stream<String> stream = Stream.of("程序员淘淘", "测试源码", "打代码的淘淘");
        stream.forEach(comsumer);
    }

Predicate<T>是一个判断型接口,并且返回布尔值结果.

    private void testPredicate() {
        //获取每个字符串的长度,并且返回
        Predicate<Integer> predicate = a -> a > 18;
        UserInfo userInfo = new UserInfo(2L, "程序员淘淘", 27);
        System.out.println(predicate.test(userInfo.getAge()));
    }

Supplier<T>是一个供给型接口,无参数,有返回结果。

    private void testSupplier() {
        Supplier<Integer> supplier = () -> Integer.valueOf("666");
        System.out.println(supplier.get());
    }

这几个函数在日常开发中,也是可以灵活应用的,比如我们DAO操作完数据库,是会有个result的整型结果返回。我们就可以用Supplier<T>来统一判断是否操作成功。如下:

    private void saveDb(Supplier<Integer> supplier) {
        if (supplier.get() > 0) {
        System.out.println("插入数据库成功");
        }else{
        System.out.println("插入数据库失败");
        }
        }
@Test
public void add() throws Exception {
        Course course=new Course();
        course.setCname("java");
        course.setUserId(100L);
        course.setCstatus("Normal");
        saveDb(() -> courseMapper.insert(course));
        }

到此这篇关于java Stream操作转换方法的文章就介绍到这了,更多相关java Stream操作内容请搜索编程China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于java Stream操作转换方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153132

相关文章

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为