(读书笔记-大模型) LLM Powered Autonomous Agents

2024-05-07 05:20

本文主要是介绍(读书笔记-大模型) LLM Powered Autonomous Agents,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

智能体系统的概念

规划组件

记忆组件

工具组件

案例研究


智能体系统的概念

在大语言模型(LLM)赋能的自主智能体系统中,LLM 充当了智能体的大脑,其三个关键组件分别如下:

首先是规划,它又分为以下内容:

  • 子目标和分解。智能体将大型任务分解为更小、可管理的子目标,从而高效处理复杂的任务;

  • 反思和完善:智能体可以对过去的行为展开自我批评和自我反思,从错误中吸取教训,并针对未来的步骤进行完善,提高最终结果的质量。

其次是记忆,分为了短期记忆和长期记忆:

  • 短期记忆:作者认为所有的上下文学习(参见提示工程)都是利用模型的短期记忆来学习。

  • 长期记忆:为智能体提供了长时间保留和回忆(无限)信息的能力,通常利用外部向量存储和快速检索实现。

最后是工具使用:

  • 智能体学习调用外部 API 来获取模型权重中缺失的额外信息(通常在预训练后很难更改),包括当前信息、代码执行能力、对专有信息源的访问等。

下图 1 为 LLM 赋能的自主智能体系统概览。

规划组件

  • 任务分解:一项复杂的任务通常涉及许多步骤。智能体必须了解任务是什么并提前进行规划。

  • 思维链chain-of-thought:它已经成为增强复杂任务上模型性能的标准提示技术。在实现过程中,模型被指示「一步一步思考」,从而利用更多的测试时间计算将困难任务分解为更小、更简单的步骤。CoT 将大型任务转化为多个可管理的小任务,并解释清楚模型的思维过程。

  • 思维树tree-of-thought:它通过在每一步探索多种推理可能性来扩展 CoT。首先将问题分解为多个思考步骤,并在每个步骤中生成多个思考,创建一种树结构。搜索过程可以是广度优先搜索(BFS)或深度优先搜索(DFS),其中每个状态由分类器(通过提示)或多数 vote 进行评估。

  • LLM+P:依赖外部经典规划器来进行长期规划。该方法利用规划领域定义语言(PDDL)作为描述规划问题的中间接口。在这一过程中,LLM (1) 将问题转化为「Problem PDDL」,然后 (2) 请求经典规划器基于现有的「Domain PDDL」生成 PDDL 规划,最后 (3) 将 PDDL 规划转换回自然语言。

  • 自我反思Self-reflection:允许自主智能体通过完善以往行动决策和纠正以往错误来迭代改进,因而会在出现试错的现实世界任务中发挥至关重要的作用。ReAct 通过将动作空间扩展为一个任务特定的「离散动作和语言空间的组合」,将推理和动作集成在 LLM 中。离散动作使 LLM 能够与环境交互(例如使用维基百科搜索 API),而语言空间促使 LLM 以自然语言生成推理轨迹。注意,这里还可以将任务分为知识密集型任务(例如,HotpotQA、FEVER)和决策型任务(例如,AlfWorld Env、WebShop)。

    • ReAct:ReAct通过将动作空间扩展为特定于任务的离散动作和语言空间的组合,在LLM中集成了推理和动作。前者使LLM能够与环境进行交互(例如使用Wikipedia搜索API),而后者促使LLM以自然语言生成推理痕迹。

      • ReAct模板为:Thought步骤可以让整体效果更好

        • Thought: ...

        • Action: ...

        • Observation: ...

        • ... (Repeated many times)

    • Reflexion:Reflexion 框架则为智能体配备了动态记忆和自我反思能力,提高了推理技能。它有一个标准的 RL 设置,其中奖励模型提供简单的二元奖励,而动作空间遵循 ReAct 中的设置。并且特定于任务的动作空间通过语言进行增强,实现复杂推理步骤。在每个动作 a_t 之后,智能体计算启发式 h_t,并选择性地根据自我反思结果来决定重置环境,从而开始新的试验。

      • Reflection框架概览:

      • 其中,启发式功能Heuristic决定轨迹何时开始效率低下或包含幻觉,以及何时应该停止。低效的规划是指花费太长时间而没有成功的轨迹。幻觉(Hallucination)被定义为遇到了一系列连续的相同动作,而这些动作导致环境中出现相同的观察;自我反思Reflection通过向 LLM 展示 two-shot 示例来创建,每个例子都是一对失败的轨迹,它们是指导未来规划中变化的理想反思。然后反思被添加到智能体的工作记忆中,最多三个,用作查询 LLM 的上下文。

    • Chain of Hindsight (CoH):鼓励模型通过显式地呈现一系列过去的输出(每个输出都带有反馈注释)来改进其自身的输出。

记忆组件


记忆类型分为三类:感知记忆、短期记忆(STM)或工作记忆以及长期记忆(LTM)。

感知记忆:这是记忆的早期阶段,它能够在原始刺激结束后保持对感官信息(视觉、听觉等)的印象。感知记忆通常只能持续几秒钟。其子类包括图像记忆(视觉)、回声记忆(听觉)和触摸记忆(触感)。

短期记忆(STM)或工作记忆:短期记忆存储着我们目前所知道的信息,以及执行复杂认知任务(如学习和推理)所需要的信息。一般来讲,短期记忆持续 20-30 秒。

长期记忆:长时记忆可以将信息存储很长时间,从几天到几十年不等,其存储容量基本上是无限的。LTM 有两种子类型:

  • 显式、陈述性记忆:这是对事实和事件的记忆,指的是那些可以有意识地回忆起来的记忆,包括情景记忆(事件和经过)和语义记忆(事实和概念);

  • 隐式、程序性记忆:这种类型的记忆是无意识的,涉及自主执行的技能和惯例,比如骑自行车或在键盘上打字。

参考人类记忆的分类,我们可以得到以下映射:

  • 感知记忆作为原始输入(包括文本、图像或其他模态)的学习嵌入表示。

  • 短期记忆作为上下文学习,由于受到 Transformer 有限上下文窗口长度的限制,短期记忆是短暂且有限的。

  • 长期记忆作为外部向量存储,智能体可以查询、快速检索,从而进行访问。

工具组件

MRKL(Karpas et al. 2022)是一种用于自主智能体的神经 - 符号(neuro-symbolic)架构,命名来源于模块化推理(Modular Reasoning)、知识(Knowledge)和语言(Language)的简称。每个 MRKL 系统包含一些「专家」模块,通用 LLM 作为一个路由器,负责将查询路由到最合适的专家模块。这些模块可以是神经的(如深度学习模型),也可以是符号的(如数学计算器、货币转换器、天气 API)。

HuggingGPT(Shen et al. 2023)则是一个使用 ChatGPT 作为任务规划器的框架,根据模型描述选择 HuggingFace 平台中可用的模型,并根据执行结果归纳总结出响应。


案例研究

  • ChemCrow 是一个由大型语言模型(LLM)设计的化学智能体,旨在完成有机合成、药物发现和材料设计等任务。通过整合 17 种专家设计的工具,ChemCrow 提高了 LLM 在化学方面的性能,并衍生出新的能力。

  • AutoGPT(自主人工智能)相当于给基于 GPT 的模型一个内存和一个身体。有了它,你可以把一项任务交给 AI 智能体,让它自主地提出一个计划,然后执行计划。此外其还具有互联网访问、长期和短期内存管理、用于文本生成的 GPT-4 实例以及使用 GPT-3.5 进行文件存储和生成摘要等功能。AutoGPT 用处很多,可用来分析市场并提出交易策略、提供客户服务、进行营销等其他需要持续更新的任务。

限制:

  • 有限的上下文长度:LLM 处理上下文信息的能力有限,尽管 self-reflection 等机制可以从过去的错误中学习,但更长或无限的上下文窗口将会带来很大的好处。虽然向量存储和检索可以提供对更大知识库的访问,但它们的表示能力不如全注意力(full attention)强大。

  • LLM 在长期规划和任务分解中的挑战:LLM 在面对意外错误时很难调整规划并进行改正,与人类可以不断试错相比,LLM 鲁棒性还是比较差的。

  • 自然语言接口的可靠性:当前的智能体系统依赖于自然语言作为 LLM 与内存和工具等外部组件之间的接口。然而,模型输出的可靠性是值得怀疑的,因为 LLM 可能会出现格式错误,偶尔还会表现出叛逆行为(例如,拒绝遵循指令)。

这篇关于(读书笔记-大模型) LLM Powered Autonomous Agents的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966437

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者