pytorch中的数据集处理部分data_transforms = { ‘train‘: transforms.Compose([...])...

2024-05-07 02:36

本文主要是介绍pytorch中的数据集处理部分data_transforms = { ‘train‘: transforms.Compose([...])...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

transforms.Compose 

在PyTorch的深度学习框架中,transforms.Compose 是一个非常常用的工具,它用于将多个数据转换(或称为“变换”)组合成一个单一的转换流程。这通常用于预处理输入数据,比如图像,以符合模型的训练要求。

当你看到 'train': transforms.Compose(...) 这样的代码时,这通常是在一个字典中定义数据预处理流程,其中 'train' 是键,表示这是用于训练数据的预处理流程。

例如,以下是一个常见的图像预处理流程,它使用了 transforms.Compose

from torchvision import transforms
# 定义训练数据预处理流程
train_transforms = transforms.Compose([
transforms.RandomResizedCrop(224), # 随机裁剪并调整大小到224x224
transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为torch.Tensor,并缩放到[0.0, 1.0]
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # 标准化
])
# 然后,你可以在DataLoader中使用这个预处理流程
# ...

在这个例子中,transforms.Compose 将四个单独的变换组合成一个:

  1. RandomResizedCrop(224): 随机裁剪图像并调整其大小到224x224像素。
  2. RandomHorizontalFlip(): 随机水平翻转图像。
  3. ToTensor(): 将PIL Image或numpy数组转换为PyTorch张量(tensor),并缩放到[0.0, 1.0]范围。
  4. Normalize(mean, std): 使用给定的均值和标准差对图像进行标准化。

当你使用这样的预处理流程时,你可以确保你的模型在训练时接收到经过适当预处理的数据。

这样做的操作是将所有的图片都进行裁剪翻转什么的吗?

不完全是。在PyTorch的transforms.Compose中,定义的变换序列会对每一张图片逐一应用。但是,这些变换中的某些是随机的,这意味着它们不会以相同的方式应用于每一张图片。

具体来说:

  • RandomResizedCrop(224): 这个变换会随机裁剪图片的一个区域,并将其大小调整为224x224像素。这意味着对于每一张图片,裁剪的区域和位置都是随机的。
  • RandomHorizontalFlip(): 这个变换会随机地水平翻转图片。也就是说,对于每一张图片,它都有50%的概率被翻转。
  • ToTensor(): 这个变换不是随机的,它总是将PIL Image或numpy数组转换为PyTorch张量,并进行缩放。
  • Normalize(mean, std): 这个变换也不是随机的,它使用给定的均值和标准差对图片进行标准化。

因此,当你使用transforms.Compose定义的预处理流程时,每一张图片都会经过这些变换,但其中的随机变换(如RandomResizedCropRandomHorizontalFlip)会导致每张图片的最终效果不同。这种随机性有助于模型在训练时看到更多样化的数据,从而提高其泛化能力。

会扩充数据?

使用transforms.Compose结合随机变换(如RandomResizedCropRandomHorizontalFlip并不会直接扩充(augment)数据集的大小,但它确实会增加数据集的多样性(variability)或复杂性(complexity),从而帮助模型更好地泛化。

会将改变的数据存储到原来的文件夹吗?

不会。在PyTorch的transforms.Compose中,应用的数据变换(如裁剪、翻转等)是在数据加载到模型之前进行的,这些变换会直接影响在内存中表示的图片数据但不会更改原始文件夹中的图片文件。这些变换是临时的,仅在当前的数据加载和训练过程中有效。每次从文件夹中加载图片时,都会重新应用这些变换,生成新的、与原始图片略有不同的版本。

因此,如果你需要保存经过变换的图片,你需要在代码中明确实现这一步骤,比如使用PIL.Image.save()方法将变换后的图片保存到指定的文件夹中。但请注意,这通常不是必要的,因为数据变换的主要目的是在训练过程中为模型提供多样化的数据视图,而不是永久地更改原始图片。

这篇关于pytorch中的数据集处理部分data_transforms = { ‘train‘: transforms.Compose([...])...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966087

相关文章

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下