NMF(non-negative matrix factorization)相关论文[1]

2024-05-06 22:38

本文主要是介绍NMF(non-negative matrix factorization)相关论文[1],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

部分非负矩阵分解论文的总结,在做相关工作的童鞋的可以互相交流下~!

Guan N, Tao D, Luo Z, et al. Online non-negative matrix factorization with robust stochastic approximation[J]. IEEE Transactions on Neural Networks & Learning Systems, 2012, 23(7):1087.

Motivation:
由于NMF的分解过程需要将所有的数据集放在内存中,不适用于数据流的处理。该论文提出了一种高效的在线rsa-nmf算法,近似更新结果。
创新:
在线增量更新,对于l1-regularized and l2-regularized 也做了扩展。

理论性较强。实验:人脸识别、图像标注

Chen Y, Zhang H, Wu J, et al. Modeling Emerging, Evolving and Fading Topics Using Dynamic Soft Orthogonal NMF with Sparse Representation[C]// IEEE International Conference on Data Mining. IEEE, 2016:61-70.

NMF类似于LSI,可以探测文本当中潜在的话题,为了动态捕获和跟踪这些潜在的话题,此论文提出一种基于软正交约束(Soft Orthogonal)的矩阵分解方法,来动态模拟话题的emerging/evolving/fading过程。
话题的三个过程如图

论文confused me 的地方:
1.为什么正交约束能保证分解的结果可以准确地模拟话题的变迁?为什么加了软正交约束后topic的F1值会有提升?
思考后自己解答:
加入约束后,保证分解的数据更偏向于你约束的目标。聚类来看的话,距离更近。

2.论文用20newsgroup做实验,micro-averaged F1作为评测指标,性能有所提升。文章其实用的是聚类的方法,groundtruth是label过的标签,可是20news数据集并没有分了100类,怎么做的实验?
3.矩阵分解的output是U,和V,怎么模拟出现和消亡?

这是一篇B的论文,与此论文相似的是下面的这一篇很经典的paper

Vaca C K, Mantrach A, Jaimes A, et al. A time-based collective factorization for topic discovery and monitoring in news[C]// International Conference on World Wide Web. 2014:527-538.

这篇论文的贡献在以下几点:
1.提出了一个联合矩阵的模型,以及求解方法;论文做了一个假设:上一个time-slot的数据对于下一个时间段的数据是具有影响的,从而建立了联合矩阵的模型即,用上一个时间段的数据去预测下一个时间段的数据。
2.加入了一个时间片状态矩阵M模拟话题的强度,通过强度的矩阵来表现话题的演化过程。非常巧妙。
3.给出了相关理论证明和源其代码TopicDiscoveryJPP

将模型应用,通过比较状态矩阵表现追踪的过程,这点不太明白。

这篇关于NMF(non-negative matrix factorization)相关论文[1]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/965587

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Redis的Hash类型及相关命令小结

《Redis的Hash类型及相关命令小结》edisHash是一种数据结构,用于存储字段和值的映射关系,本文就来介绍一下Redis的Hash类型及相关命令小结,具有一定的参考价值,感兴趣的可以了解一下... 目录HSETHGETHEXISTSHDELHKEYSHVALSHGETALLHMGETHLENHSET

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

两个月冲刺软考——访问位与修改位的题型(淘汰哪一页);内聚的类型;关于码制的知识点;地址映射的相关内容

1.访问位与修改位的题型(淘汰哪一页) 访问位:为1时表示在内存期间被访问过,为0时表示未被访问;修改位:为1时表示该页面自从被装入内存后被修改过,为0时表示未修改过。 置换页面时,最先置换访问位和修改位为00的,其次是01(没被访问但被修改过)的,之后是10(被访问了但没被修改过),最后是11。 2.内聚的类型 功能内聚:完成一个单一功能,各个部分协同工作,缺一不可。 顺序内聚: