Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model-论文阅读笔记

本文主要是介绍Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model-论文阅读笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章ACL2019  - Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model

Code https://github.com/lancopku/Graph-to-seq-comment-generation

Data 

  • 论文研究内容

根据新闻title和文章自动评论Comments

摘要:自动文章评论有助于鼓励用户参与和在线新闻平台上的互动。然而,对于传统的基于encoder-decoder的模型来说,新闻文档通常太长,这往往会导致一般性和不相关的评论。在本文中,我们提出使用一个Graph-to-Sequence的模型来生成评论,该模型将输入的新闻建模为一个主题交互图。通过将文章组织成图结构,我们的模型可以更好地理解文章的内部结构和主题之间的联系,这使得它能够更好地理解故事。我们从中国流行的在线新闻平台Tencent Kuaibao上收集并发布了一个大规模的新闻评论语料库。广泛的实验结果表明,与几个强大的baseline模型相比,我们的模型可以产生更多的连贯性和信息丰富性的评论。

  • Motivation:

a.新闻文章可能很长、标题短,seq2seq无法获取足够的信息;b.链接广告形式的新闻内容不够生成连贯的评论。c.用户关注的topic不同,生成的comments侧重也不同。

基于此,文章提出用graph-to-sequence model 生成评论信息。步骤:1. 用文章生成 topic interaction graph---图的顶点:topic words,边-semantic relation;2. 用GNN建模,3种metrics 测试;

  • Related works

GNN做文本生成

  • 具体实现

在本节中,我们将介绍所提出的图形序列模型(如图1所示)。我们的模型遵循编码器 - 解码器框架。编码器必须将作为交互图表呈现的文章文本编码成一组隐藏向量,解码器基于该隐藏向量生成评论序列。

1.Graph Construction

对于文章D,用textRank 算法生成keywords(k),包含keywords的句子(s)作为边,一个句子有多个keywords,建立两个keywords之间的联系;不包含keywords的句子顶点(v)标记为Empty,文章title的顶点特殊标记;边的权重值取决于重复句子的数量或者两个顶点的tf-idf值

2. Vertex Encoder

word embedding and positional embedding

 QKV 分别表示:query vector, key vector and value vectors

3. Graph Encoder 也就是Graph Embedding Method

采用graph convolutional model 

4. Decoder

解码是RNN+ Attention

  •  

实验-数据集

结果

 

这篇关于Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model-论文阅读笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/965563

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓