eigen在c++的基本使用,矩阵运算,几何运算

2024-05-06 18:44

本文主要是介绍eigen在c++的基本使用,矩阵运算,几何运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩阵运算

CMakeLists.txt文件

cmake_minimum_required(VERSION 3.2)
project(useEigen)set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-O3")include_directories("/usr/include/eigen3")
add_executable(eigenMatrix eigenMatrix.cpp)

eigenMatrix.cpp文件

#include <iostream>using namespace std;#include <ctime>
#include <eigen3/Eigen/Core> // Eigen 核心部分
#include <eigen3/Eigen/Dense> // 稠密矩阵的代数运算(逆,特征值等)using namespace Eigen;#define MATRIX_SIZE 10int main(int argc, char **argv) {Matrix<float, 2, 3> matrixf_23;matrixf_23 << 1, 2, 3, 4, 5, 6;cout << "matrix 2x3 from 1 to 6: \n" << matrixf_23 << endl;Vector3d v_3d; // //本质是Matrix<double,3,1>v_3d << 3, 2, 1;Matrix3d matrix_33 = Matrix3d::Zero(); //本质是Matrix<double,3,3>,这里初始化为零Matrix<double, Dynamic, Dynamic> matrix_x; // 动态矩阵,不确定矩阵大小,等效于MatrixXd matrix_x;// Eigen里你不能混合两种不同类型的矩阵,像这样是错的// Matrix<double, 2, 1> result_wrong_type = matrixf_23 * v_3d;// 应该显式转换Matrix<double, 2, 1> result = matrixf_23.cast<double>() * v_3d;cout << "[1,2,3;4,5,6]*[3,2,1]=" << result.transpose() << endl;// 一些矩阵运算,四则运算直接用+-*/即可matrix_33 = Matrix3d::Random();                             // 随机数矩阵cout << "random matrix: \n" << matrix_33 << endl;cout << "transpose: \n" << matrix_33.transpose() << endl;   // 转置cout << "sum: " << matrix_33.sum() << endl;                 // 元素和cout << "trace: " << matrix_33.trace() << endl;             // 迹cout << "times 10: \n" << 10 * matrix_33 << endl;           // 数乘cout << "inverse: \n" << matrix_33.inverse() << endl;       // 逆cout << "det: " << matrix_33.determinant() << endl;         // 行列式// 特征值与特征向量, 这里使用AD分解,实对称矩阵可以保证对角化成功SelfAdjointEigenSolver<Matrix3d> eigen_solver(matrix_33.transpose() * matrix_33);cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl;cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl;// 解方程,求解 matrix_NN * x = v_Nd 这个方程Matrix<double, MATRIX_SIZE, MATRIX_SIZE> matrix_NN = MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE);matrix_NN = matrix_NN * matrix_NN.transpose();  // 保证半正定Matrix<double, MATRIX_SIZE, 1> v_Nd = MatrixXd::Random(MATRIX_SIZE, 1);clock_t time_stt = clock(); // 计时// 直接求逆自然是最直接的,但是求逆运算量大Matrix<double, MATRIX_SIZE, 1> x = matrix_NN.inverse() * v_Nd;cout << "time of normal inverse is " << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl;cout << "x = " << x.transpose() << endl;// 通常用矩阵分解来求,如QR分解,速度会快很多time_stt = clock();x = matrix_NN.colPivHouseholderQr().solve(v_Nd);cout << "time of Qr decomposition is " << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl;cout << "x = " << x.transpose() << endl;// 对于正定矩阵,可以用cholesky分解来解方程time_stt = clock();x = matrix_NN.ldlt().solve(v_Nd);cout << "time of ldlt decomposition is " << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << endl;cout << "x = " << x.transpose() << endl;return 0;
}

几何运算

CMakeLists.txt文件

cmake_minimum_required(VERSION 3.2)
project(useEigen)set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-O3")include_directories("/usr/include/eigen3")
add_executable(eigenGeometry eigenGeometry.cpp)

eigenGeometry.cpp文件

#include <iostream>
#include <cmath>using namespace std;#include <eigen3/Eigen/Core>
#include <eigen3/Eigen/Geometry>using namespace Eigen;// Eigen几何模块的使用方法,Geometry模块提供了各种旋转和平移的表示int main(int argc, char **argv) {cout.precision(3); // 设置了cout流的输出精度,使其仅保留小数点后三位Vector3d v(1, 0, 0);// 3D旋转矩阵,直接使用 Matrix3d 或 Matrix3fMatrix3d rotation_matrix = Matrix3d::Identity();// 旋转向量,使用AngleAxis, 它底层不直接是Matrix,但运算可以当作矩阵(因为重载了运算符)AngleAxisd rotation_vector(M_PI/4,Vector3d(0,0,1));  // 沿Z轴旋转 45 度cout << "rotation matrix =\n" << rotation_vector.matrix() << endl;      // 将旋转向量转换成旋转矩阵rotation_matrix = rotation_vector.toRotationMatrix();                   // 也可以直接赋值Vector3d v_rotated = rotation_vector * v;   // 旋转向量执行坐标变换cout << "(1,0,0) after rotation (by angle axis) = " << v_rotated.transpose() << endl;v_rotated = rotation_matrix * v;            // 旋转矩阵执行坐标变换cout << "(1,0,0) after rotation (by matrix) = " << v_rotated.transpose() << endl;// 欧拉角: 可以将旋转矩阵直接转换成欧拉角Vector3d euler_angles = rotation_matrix.eulerAngles(2, 1, 0); // ZYX顺序,即yaw-pitch-roll顺序cout << "yaw pitch roll = " << euler_angles.transpose() << endl;// 欧氏变换矩阵使用IsometryIsometry3d T = Isometry3d::Identity();              // 虽然称为3d,实质上是4*4的矩阵T.rotate(rotation_vector);                  // 设置旋转T.pretranslate(Vector3d(1, 3, 4));   // 设置平移cout << "Transform matrix = \n" << T.matrix() << endl;Vector3d v_transformed = T * v;                     // 变换矩阵进行坐标变换,相当于R*v+tcout << "v tranformed = " << v_transformed.transpose() << endl;// 对于仿射和射影变换,使用Affine3d和Projective3d即可,略// 四元数QuaterniondQuaterniond q = Quaterniond(rotation_vector);  // 可以直接把旋转向量赋值给四元数,反之亦然cout << "quaternion from rotation vector = " << q.coeffs().transpose() << endl;   // coeffs的顺序是(v,s)q = Quaterniond(rotation_matrix); // 也可以把旋转矩阵赋给四元数cout << "quaternion from rotation matrix = " << q.coeffs().transpose() << endl;v_rotated = q*v;                        // 使用四元数旋转一个向量,使用重载的乘法即可cout << "(1,0,0) after rotation = " << v_rotated.transpose() << endl;cout << "should be equal to " << (q*Quaterniond(0,1,0,0)*q.inverse()).coeffs().transpose() << endl;return 0;
}

这篇关于eigen在c++的基本使用,矩阵运算,几何运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/965077

相关文章

C语言中联合体union的使用

本文编辑整理自: http://bbs.chinaunix.net/forum.php?mod=viewthread&tid=179471 一、前言 “联合体”(union)与“结构体”(struct)有一些相似之处。但两者有本质上的不同。在结构体中,各成员有各自的内存空间, 一个结构变量的总长度是各成员长度之和。而在“联合”中,各成员共享一段内存空间, 一个联合变量

关于C++中的虚拟继承的一些总结(虚拟继承,覆盖,派生,隐藏)

1.为什么要引入虚拟继承 虚拟继承是多重继承中特有的概念。虚拟基类是为解决多重继承而出现的。如:类D继承自类B1、B2,而类B1、B2都继承自类A,因此在类D中两次出现类A中的变量和函数。为了节省内存空间,可以将B1、B2对A的继承定义为虚拟继承,而A就成了虚拟基类。实现的代码如下: class A class B1:public virtual A; class B2:pu

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

C++的模板(八):子系统

平常所见的大部分模板代码,模板所传的参数类型,到了模板里面,或实例化为对象,或嵌入模板内部结构中,或在模板内又派生了子类。不管怎样,最终他们在模板内,直接或间接,都实例化成对象了。 但这不是唯一的用法。试想一下。如果在模板内限制调用参数类型的构造函数会发生什么?参数类的对象在模板内无法构造。他们只能从模板的成员函数传入。模板不保存这些对象或者只保存他们的指针。因为构造函数被分离,这些指针在模板外

Tolua使用笔记(上)

目录   1.准备工作 2.运行例子 01.HelloWorld:在C#中,创建和销毁Lua虚拟机 和 简单调用。 02.ScriptsFromFile:在C#中,对一个lua文件的执行调用 03.CallLuaFunction:在C#中,对lua函数的操作 04.AccessingLuaVariables:在C#中,对lua变量的操作 05.LuaCoroutine:在Lua中,

C++工程编译链接错误汇总VisualStudio

目录 一些小的知识点 make工具 可以使用windows下的事件查看器崩溃的地方 dumpbin工具查看dll是32位还是64位的 _MSC_VER .cc 和.cpp 【VC++目录中的包含目录】 vs 【C/C++常规中的附加包含目录】——头文件所在目录如何怎么添加,添加了以后搜索头文件就会到这些个路径下搜索了 include<> 和 include"" WinMain 和

Vim使用基础篇

本文内容大部分来自 vimtutor,自带的教程的总结。在终端输入vimtutor 即可进入教程。 先总结一下,然后再分别介绍正常模式,插入模式,和可视模式三种模式下的命令。 目录 看完以后的汇总 1.正常模式(Normal模式) 1.移动光标 2.删除 3.【:】输入符 4.撤销 5.替换 6.重复命令【. ; ,】 7.复制粘贴 8.缩进 2.插入模式 INSERT

C/C++的编译和链接过程

目录 从源文件生成可执行文件(书中第2章) 1.Preprocessing预处理——预处理器cpp 2.Compilation编译——编译器cll ps:vs中优化选项设置 3.Assembly汇编——汇编器as ps:vs中汇编输出文件设置 4.Linking链接——链接器ld 符号 模块,库 链接过程——链接器 链接过程 1.简单链接的例子 2.链接过程 3.地址和

C++必修:模版的入门到实践

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C++学习 贝蒂的主页:Betty’s blog 1. 泛型编程 首先让我们来思考一个问题,如何实现一个交换函数? void swap(int& x, int& y){int tmp = x;x = y;y = tmp;} 相信大家很快就能写出上面这段代码,但是如果要求这个交换函数支持字符型

Lipowerline5.0 雷达电力应用软件下载使用

1.配网数据处理分析 针对配网线路点云数据,优化了分类算法,支持杆塔、导线、交跨线、建筑物、地面点和其他线路的自动分类;一键生成危险点报告和交跨报告;还能生成点云数据采集航线和自主巡检航线。 获取软件安装包联系邮箱:2895356150@qq.com,资源源于网络,本介绍用于学习使用,如有侵权请您联系删除! 2.新增快速版,简洁易上手 支持快速版和专业版切换使用,快速版界面简洁,保留主