使用LMDeploy部署和量化Llama 3模型

2024-05-06 14:44

本文主要是介绍使用LMDeploy部署和量化Llama 3模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

## 引言
在人工智能领域,大型语言模型(LLMs)正变得越来越重要,它们在各种自然语言处理任务中发挥着关键作用。Llama 3是近期发布的一款具有8B和70B参数量的模型,它在性能和效率方面都取得了显著的进步。为了简化Llama 3的部署和量化过程,lmdeploy团队提供了强大的支持。本文将详细介绍如何使用LMDeploy工具来部署和量化Llama 3模型,以及如何运行视觉多模态大模型Llava-Llama-3。

## LMDeploy和Llama 3模型介绍
### LMDeploy
LMDeploy是一个高效的部署工具,它支持大型模型的部署、量化和API服务封装。它旨在简化从模型准备到服务部署的整个流程。

### Llama 3模型
Llama 3是由InternStudio发布的最新大型语言模型,具有8B和70B两种参数量版本。该模型在多种语言任务上展现出了优异的性能。

## 环境和模型准备
在开始部署之前,需要准备环境和下载模型。以下是环境配置和模型下载的步骤:

1. **环境配置**:使用conda创建一个新的环境并安装PyTorch及其相关依赖。
   ```bash
   conda create -n lmdeploy python=3.10
   conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia
   ```

2. **安装LMDeploy**:安装LMDeploy的最新版本。
   ```bash
   pip install -U lmdeploy[all]
   ```

3. **Llama 3模型下载**:从OpenXLab获取模型权重,或者在InternStudio环境中使用软链接。

## LMDeploy Chat CLI工具
LMDeploy提供了一个命令行界面(CLI)工具,可以方便地与模型进行交互。以下是使用CLI工具与Llama 3模型进行对话的示例:

```bash
conda activate lmdeploy
lmdeploy chat /root/model/Meta-Llama-3-8B-Instruct
```

## LMDeploy模型量化
量化是优化模型以减少内存占用和提高推理速度的过程。LMDeploy支持多种量化方式,包括KV8量化和W4A16量化。

### KV Cache管理
KV Cache是模型运行时占用显存的一部分。通过设置`--cache-max-entry-count`参数,可以控制KV缓存占用显存的最大比例。

### W4A16量化
W4A16量化是一种将模型权重量化为4位整数的方法,它显著减少了模型的显存占用,同时保持了较高的推理效率。

```bash
lmdeploy lite auto_awq /root/model/Meta-Llama-3-8B-Instruct --calib-dataset 'ptb' --calib-samples 128 --calib-seqlen 1024 --w-bits 4 --w-group-size 128 --work-dir /root/model/Meta-Llama-3-8B-Instruct_4bit
```

## LMDeploy服务(serve)
在生产环境中,将模型封装为API接口服务是一种常见的做法。LMDeploy提供了简单的命令来启动API服务器:

```bash
lmdeploy serve api_server /root/model/Meta-Llama-3-8B-Instruct --model-format hf --quant-policy 0 --server-name 0.0.0.0 --server-port 23333 --tp 1
```

## 推理速度
使用LMDeploy在A100(80G)GPU上推理Llama3,每秒请求处理数(RPS)可达到25,显示出高推理效率。

## 使用LMDeploy运行视觉多模态大模型Llava-Llama-3
LMDeploy也支持运行视觉多模态模型,如Llava-Llama-3。以下是安装依赖和运行模型的步骤:

1. **安装依赖**:
   ```bash
   pip install git+https://github.com/haotian-liu/LLaVA.git
   ```

2. **运行模型**:
   ```python
   from lmdeploy import pipeline, ChatTemplateConfig
   from lmdeploy.vl import load_image
   pipe = pipeline('xtuner/llava-llama-3-8b-v1_1-hf',
                   chat_template_config=ChatTemplateConfig(model_name='llama3'))
   image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
   response = pipe(('describe this image', image))
   print(response.text)
   ```

## 结语
LMDeploy是一个强大的工具,它为部署和量化大型语言模型提供了极大的便利。通过本文的指南,读者应该能够理解如何使用LMDeploy来部署Llama 3模型,以及如何运行视觉多模态模型Llava-Llama-3。随着AI技术的不断进步,LMDeploy和类似的工具将变得越来越重要,它们将帮助研究人员和开发人员更高效地利用大型模型。

这篇关于使用LMDeploy部署和量化Llama 3模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/964635

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有