LCR 140. 训练计划 II

2024-05-06 06:04
文章标签 训练 ii 计划 lcr 140

本文主要是介绍LCR 140. 训练计划 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

刷算法题:

第一遍:1.看5分钟,没思路看题解

2.通过题解改进自己的解法,并且要写每行的注释以及自己的思路。

3.思考自己做到了题解的哪一步,下次怎么才能做对(总结方法)

4.整理到自己的自媒体平台。

5.再刷重复的类似的题目,根据时间和任务安排刷哪几个板块

6.用c++语言 都刷过一遍了 就刷中等

一.题目

给定一个头节点为 head 的链表用于记录一系列核心肌群训练项目编号,请查找并返回倒数第 cnt 个训练项目编号。

示例 1:

输入:head = [2,4,7,8], cnt = 1
输出:8

提示:

  • 1 <= head.length <= 100
  • 0 <= head[i] <= 100
  • 1 <= cnt <= head.length

二、反思

1.自己的解法

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public://第一个指针先走cnt步,当第一个指针到最后时,再返回第二个指针ListNode* trainingPlan(ListNode* head, int cnt) {ListNode* cur=head;for(int i=0;i<cnt;i++){head=head->next;}while(head != nullptr){cur =cur ->next;head =head ->next;}return cur;}
};

2.题目的解法 

class Solution {
public:ListNode* trainingPlan(ListNode* head, int cnt) {ListNode *former = head, *latter = head;for(int i = 0; i < cnt; i++) {if(former == nullptr) return nullptr;former = former->next;}while(former != nullptr) {former = former->next;latter = latter->next;}return latter;}
};作者:Krahets
链接:https://leetcode.cn/problems/lian-biao-zhong-dao-shu-di-kge-jie-dian-lcof/solutions/117507/mian-shi-ti-22-lian-biao-zhong-dao-shu-di-kge-j-11/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 3.思路的异同

官方的题解中,还考虑了cnt大于链表长度的情况。

三.进步的地方

 对于链表而言获取整个链表大小是比较困难的,因此要常常想到其他做法,例如这里的双指针,以及之前二进制链表的做法,找出数学规律等。

这篇关于LCR 140. 训练计划 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/963583

相关文章

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

从0到1,AI我来了- (7)AI应用-ComfyUI-II(进阶)

上篇comfyUI 入门 ,了解了TA是个啥,这篇,我们通过ComfyUI 及其相关Lora 模型,生成一些更惊艳的图片。这篇主要了解这些内容:         1、哪里获取模型?         2、实践如何画一个美女?         3、附录:               1)相关SD(稳定扩散模型的组成部分)               2)模型放置目录(重要)

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

学习记录:js算法(二十八):删除排序链表中的重复元素、删除排序链表中的重复元素II

文章目录 删除排序链表中的重复元素我的思路解法一:循环解法二:递归 网上思路 删除排序链表中的重复元素 II我的思路网上思路 总结 删除排序链表中的重复元素 给定一个已排序的链表的头 head , 删除所有重复的元素,使每个元素只出现一次 。返回 已排序的链表 。 图一 图二 示例 1:(图一)输入:head = [1,1,2]输出:[1,2]示例 2:(图

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录 在深度学习项目中,目标检测是一项重要的任务。本文将详细介绍如何使用Detectron2进行目标检测模型的复现训练,涵盖训练数据准备、训练命令、训练日志分析、训练指标以及训练输出目录的各个文件及其作用。特别地,我们将演示在训练过程中出现中断后,如何使用 resume 功能继续训练,并将我们复现的模型与Model Zoo中的

LeetCode:3177. 求出最长好子序列 II 哈希表+动态规划实现n*k时间复杂度

3177. 求出最长好子序列 II 题目链接 题目描述 给你一个整数数组 nums 和一个非负整数k 。如果一个整数序列 seq 满足在下标范围 [0, seq.length - 2] 中 最多只有 k 个下标i满足 seq[i] != seq[i + 1] ,那么我们称这个整数序列为好序列。请你返回 nums中好子序列的最长长度。 实例1: 输入:nums = [1,2,1,1,3],

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通