深度学习技术在运动想象脑电信号中分类中的学习实战

2024-05-05 06:28

本文主要是介绍深度学习技术在运动想象脑电信号中分类中的学习实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

----(本文由思影科技学习参考后得出)        

脑机接口(BCI)中运动想象脑电图(MI-EEG)是最常见的BCI范式之一,已经广泛应用于只能医疗,如中风后康复和移动辅助机器人。近年来,深度学习(DL)对基于MI-EEG的BCI产生了巨大影响。

        争对基于DL的MI分类提出了三个主要问题:

        (1)基于DL的技术是否需要预处理?

        (2)哪些输入构建最适合基于DL的技术

        (3)基于DL的技术的当前趋势是什么?

脑电图(EEG)传感器测量来自人脑的生物测量数据,这些数据可以被解码以理解潜在的身体和心理状态,然后用于进一步提高生活质量。与一般的只能医疗传感器不同,EEG脑信号被智能医疗系统以两种方式利用:

        一是导入与医疗相关的信息,即感知。

        二是与物理世界互动,即控制,使用智能设备如轮椅或外骨骼。

传统的机器学习方式已被广泛用于分类MI-EEG数据。

传统方法通常包括三个主要步骤来处理MI-EEG信号:预处理特征提取分类

预处理包括多个操作:如通道选择(选择对MI任务最有价值的EEG通道)、信号过滤(选择对MI任务最优价值的频率范围、信号归一化(在时间轴上归一化每个EEG通道)和伪迹去除(从MI-EEG中去除噪声))

其中,伪迹去除最常用的方法是独立成分分析(ICA)。

特征提取,从高维EEG信号中提取与任务相关的MI特征。

MI特征分为三类,取决于数据处理的领域:时间特征、频谱特征和空间特征

时间特征在不同时间点或不同时间段的时间域中提取,如均值、方差、Hjorth参数和偏度。

频谱特征包括频率域特征,如功率谱密度(PSD)和快速傅里叶变换(FFT)还有时频特征,如短时傅里叶变换(STFT)和小波变换(WT)

空间特征旨在识别头皮上特定电极位置,如共同空间模式(CSPs)。CSP是MI-EEG数据最常见的特征提取方法。

一些研究人员试图扩展和改进CSP方法。稀疏CSP使用正则化特征为CSP值增加稀疏性。静态CSP、发散CSP和概率CSP是一些尝试增强CSP功能的其他技术。滤波器组CSP(FBCSP)[23]是CSP方法的另一个扩展版本,它使用EEG通道中的空间信息以及MI-EEG信号中的频率数据。FBCSP(滤波器组公共空间模式)在MI分类中表现出了所有依赖手动特征提取的其他方法中最好的性能。在分类阶段,使用了多种分类器来将提取的MI特征分类为不同的MI任务,如朴素贝叶斯分类器、线性判别分析(LDA、支持向量机(SVM)和极限学习机(ELM)。

目前的面临的问题

        EEG信号容易受到许多噪声源的影响,包括生物伪迹(例如,心跳、眨眼、舌头和肌肉运动、注意力水平、呼吸和疲劳)、电子设备(例如,无线设备、手机和电脑)以及环境噪声(例如,声音和照明)。

        这些伪迹,加上通道相关性、受试者依赖性以及EEG信号的高维性,使得大脑信号的解释和分类成为一项困难的任务。因此,开发一个更稳定、更通用的MI-EEG BCI框架至关重要,它可以在各种场景中运行,并能从具有挑战性的MI-EEG数据中自动提取独特特征。

        其次,EEG信号的信噪比(SNR)非常低,具有时间依赖的协变量,并且是非平稳的。

由于传统预处理和特征提取方法的时间复杂性,以及信息丢失的可能性,低SNR问题不容易通过传统的MI-EEG分类方法解决。

        第三,特征提取强烈依赖于特定领域的人类经验。例如,基本的生物学知识对于通过EEG信号分析MI任务的状态至关重要。需要一种自动化的提取方法。

现状分析

        在过去的五年中,深度学习(DL)方法已被用于解决分类MI-EEG信号。与传统的机器学习方法不同,DL可以使用深层架构从原始MI-EEG数据中自动学习高级和潜在的复杂特征,同时消除了预处理和耗时特征提取的需求。

这篇关于深度学习技术在运动想象脑电信号中分类中的学习实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960996

相关文章

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java实战之利用POI生成Excel图表

《Java实战之利用POI生成Excel图表》ApachePOI是Java生态中处理Office文档的核心工具,这篇文章主要为大家详细介绍了如何在Excel中创建折线图,柱状图,饼图等常见图表,需要的... 目录一、环境配置与依赖管理二、数据源准备与工作表构建三、图表生成核心步骤1. 折线图(Line Ch

Java使用Tesseract-OCR实战教程

《Java使用Tesseract-OCR实战教程》本文介绍了如何在Java中使用Tesseract-OCR进行文本提取,包括Tesseract-OCR的安装、中文训练库的配置、依赖库的引入以及具体的代... 目录Java使用Tesseract-OCRTesseract-OCR安装配置中文训练库引入依赖代码实

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep