深度学习技术在运动想象脑电信号中分类中的学习实战

2024-05-05 06:28

本文主要是介绍深度学习技术在运动想象脑电信号中分类中的学习实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

----(本文由思影科技学习参考后得出)        

脑机接口(BCI)中运动想象脑电图(MI-EEG)是最常见的BCI范式之一,已经广泛应用于只能医疗,如中风后康复和移动辅助机器人。近年来,深度学习(DL)对基于MI-EEG的BCI产生了巨大影响。

        争对基于DL的MI分类提出了三个主要问题:

        (1)基于DL的技术是否需要预处理?

        (2)哪些输入构建最适合基于DL的技术

        (3)基于DL的技术的当前趋势是什么?

脑电图(EEG)传感器测量来自人脑的生物测量数据,这些数据可以被解码以理解潜在的身体和心理状态,然后用于进一步提高生活质量。与一般的只能医疗传感器不同,EEG脑信号被智能医疗系统以两种方式利用:

        一是导入与医疗相关的信息,即感知。

        二是与物理世界互动,即控制,使用智能设备如轮椅或外骨骼。

传统的机器学习方式已被广泛用于分类MI-EEG数据。

传统方法通常包括三个主要步骤来处理MI-EEG信号:预处理特征提取分类

预处理包括多个操作:如通道选择(选择对MI任务最有价值的EEG通道)、信号过滤(选择对MI任务最优价值的频率范围、信号归一化(在时间轴上归一化每个EEG通道)和伪迹去除(从MI-EEG中去除噪声))

其中,伪迹去除最常用的方法是独立成分分析(ICA)。

特征提取,从高维EEG信号中提取与任务相关的MI特征。

MI特征分为三类,取决于数据处理的领域:时间特征、频谱特征和空间特征

时间特征在不同时间点或不同时间段的时间域中提取,如均值、方差、Hjorth参数和偏度。

频谱特征包括频率域特征,如功率谱密度(PSD)和快速傅里叶变换(FFT)还有时频特征,如短时傅里叶变换(STFT)和小波变换(WT)

空间特征旨在识别头皮上特定电极位置,如共同空间模式(CSPs)。CSP是MI-EEG数据最常见的特征提取方法。

一些研究人员试图扩展和改进CSP方法。稀疏CSP使用正则化特征为CSP值增加稀疏性。静态CSP、发散CSP和概率CSP是一些尝试增强CSP功能的其他技术。滤波器组CSP(FBCSP)[23]是CSP方法的另一个扩展版本,它使用EEG通道中的空间信息以及MI-EEG信号中的频率数据。FBCSP(滤波器组公共空间模式)在MI分类中表现出了所有依赖手动特征提取的其他方法中最好的性能。在分类阶段,使用了多种分类器来将提取的MI特征分类为不同的MI任务,如朴素贝叶斯分类器、线性判别分析(LDA、支持向量机(SVM)和极限学习机(ELM)。

目前的面临的问题

        EEG信号容易受到许多噪声源的影响,包括生物伪迹(例如,心跳、眨眼、舌头和肌肉运动、注意力水平、呼吸和疲劳)、电子设备(例如,无线设备、手机和电脑)以及环境噪声(例如,声音和照明)。

        这些伪迹,加上通道相关性、受试者依赖性以及EEG信号的高维性,使得大脑信号的解释和分类成为一项困难的任务。因此,开发一个更稳定、更通用的MI-EEG BCI框架至关重要,它可以在各种场景中运行,并能从具有挑战性的MI-EEG数据中自动提取独特特征。

        其次,EEG信号的信噪比(SNR)非常低,具有时间依赖的协变量,并且是非平稳的。

由于传统预处理和特征提取方法的时间复杂性,以及信息丢失的可能性,低SNR问题不容易通过传统的MI-EEG分类方法解决。

        第三,特征提取强烈依赖于特定领域的人类经验。例如,基本的生物学知识对于通过EEG信号分析MI任务的状态至关重要。需要一种自动化的提取方法。

现状分析

        在过去的五年中,深度学习(DL)方法已被用于解决分类MI-EEG信号。与传统的机器学习方法不同,DL可以使用深层架构从原始MI-EEG数据中自动学习高级和潜在的复杂特征,同时消除了预处理和耗时特征提取的需求。

这篇关于深度学习技术在运动想象脑电信号中分类中的学习实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960996

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统