GiantPandaCV | FasterTransformer Decoding 源码分析(二)-Decoder框架介绍

本文主要是介绍GiantPandaCV | FasterTransformer Decoding 源码分析(二)-Decoder框架介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“GiantPandaCV,仅用于学术分享,侵权删,干货满满。

原文链接:FasterTransformer Decoding 源码分析(二)-Decoder框架介绍

作者丨进击的Killua

来源丨https://zhuanlan.zhihu.com/p/669303360

编辑丨GiantPandaCV

Decoder模块是FasterTransformer Decoding model中最核心的处理模块,在GiantPandaCV | FasterTransformer Decoding 源码分析(一)-整体框架介绍一文中详细介绍了Decoder模块在整体中所处的位置,本文试图从流程框架层面对该模块进行源码分析,梳理出主要处理模块,后续再逐步对各个模块实现进行解析。

一、整体框架

Decoder在整体解码过程中的位置

代码地址:link

下图中左边是经典的Transformer Decoder结构,右边是FasterTransformer Decoder结构,主要有以下几点区别

  1. 将最后的LayerNorm提前到入口,这里并不能加速流程,但是这种顺序在实践中表现得比较好,允许模型更好地调整输入的分布,使其更适合通过self-attention进行处理,最后处理完会在调用外层再做一次LayerNorm。

  2. 将 SelfAttention和CrossAttention中最后一个 Linear 的 Add Bias,Add Res(残差连接)以及 LayerNorm 合并成一个 (Add Bias & Add Res & LayerNorm) Kernel,降低 Kernel Launch 开销以及提升访问带宽。

  3. 将 FFN 的最后一个 Linear 的 Add Bias,Add Res(残差连接)合并成一个 (Add Bias & Add Res) Kernel,降低 Kernel Launch 开销以及提升访问带宽。

Decoder具体处理流程

二、数据处理流

接下来结合框架图来解析下forward函数的数据处理流程,整体流程在代码上还是非常清晰的。

Input & Output

template<typename T>
void Decoder<T>::forward(std::vector<Tensor>*                      output_tensors,const std::vector<Tensor>*                input_tensors,const std::vector<DecoderLayerWeight<T>>* decoder_layer_weight)
{// input tensors://      decoder_input [batch_size, hidden_dimension],//      encoder_output [batch_size, mem_max_seq_len, memory_hidden_dimension],//      encoder_sequence_length [batch_size],//      finished [batch_size],//      step [1] on cpu//      sequence_lengths [batch_size]//      cache_indirection [local_batch_size / beam_width, beam_width, max_seq_len]//              Here, local_batch_size contains the beam_width, so local_batch_size / beam_width//              is real local_batch_size.// output tensors://      decoder_output [batch_size, hidden_dimension],//      key_cache [num_layer, batch, head_num, size_per_head // x, max_seq_len, x]//      value_cache [num_layer, batch, head_num, max_seq_len, size_per_head]//      key_mem_cache [num_layer, batch_size, mem_max_seq_len, hidden_dimension],//      value_mem_cache [num_layer, batch_size, mem_max_seq_len, hidden_dimension]

这里初看其实是不知道这些输入输出shape背后的含义的,没关系这里先做个标记,等我们全部都看完了再回过头来看这里的意义。我们可以大致知道Decoder的输入tensor中包含:

  1. batch_size个单词的embedding表示或上一个step的解码输出。[batch_size, hidden_dimension]

  2. encoder层的输出。[batch_size, mem_max_seq_len, memory_hidden_dimension]

  3. encoder层输入序列的实际长度。[batch_size]

  4. batch中是否已经解码完成。[batch_size]

  5. 当前解码的步长。

  6. 已解码句子的序列长度。[batch_size]

  7. 中间缓存。(这个暂时还无法理解)

注:这里的batch_size实际是batch_size * beam_size的结果,即对每个batch的beam_size个词分别解码。

Decoder的输出tensor包含:

  1. batch个解码器的词向量输出。[batch_size, hidden_dimension]

  2. self-attention中前面steps所计算出来的key buffer。[num_layer, batch, head_num, size_per_head // x, max_seq_len, x],其中 x =4(FP32), x=8(FP16).

  3. self-attention中前面steps所计算出来的value buffer。

  4. cross-attention中前面steps所计算出来的key buffer。

  5. cross-attention中前面steps所计算出来的value buffer。

逐层解码

decoder是逐层进行解码的,接下来每层都会使用以下这些模块进行推理。

Cache

        size_t self_key_cache_offset = l;for (auto t = output_tensors->at(1).shape.begin() + 1; t != output_tensors->at(1).shape.end(); ++t) {self_key_cache_offset *= (*t);}size_t self_value_cache_offset = l;for (auto t = output_tensors->at(2).shape.begin() + 1; t != output_tensors->at(2).shape.end(); ++t) {self_value_cache_offset *= (*t);}

这里是对cache的索引,cache是fastertransformer性能优化的一大重点,思想很简单,就是复用前面step计算的结果,避免重复计算,以空间来换时间。代码中对self-attention和cross-attention中线性化处理后的key和value进行了缓存。针对cross-attention,因为key和value是来自于encoder的输出(如图所示),所以每个step上使用的key和value是相同的。

但是针对self-attention,key和value这里笔者还没完全理解为什么可以复用,这里也先留个标记(self_attention的key,value和query的生成逻辑可能不一样)。

LayerNorm

        invokeGeneralLayerNorm(decoder_normed_input_,decoder_input,decoder_layer_weight->at(l).pre_layernorm_weights.gamma,decoder_layer_weight->at(l).pre_layernorm_weights.beta,layernorm_eps_,batch_size,hidden_units_,(float*)nullptr,0,stream_);

这里调用layernorm的kernel函数进行处理,我们后续单独介绍kernel实现。

SelfAttention

        TensorMap self_attention_input_tensors{{"input_query", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, decoder_normed_input_}},{"finished", input_tensors->at(3)},{"sequence_lengths", input_tensors->at(5)},{"step", input_tensors->at(4)}};self_attention_input_tensors.insertIfValid("cache_indirection", input_tensors->at(6));TensorMap self_attention_output_tensors{{"hidden_features", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, self_attn_output_}},{"key_cache",Tensor{MEMORY_GPU,data_type,std::vector<size_t>(output_tensors->at(1).shape.begin() + 1, output_tensors->at(1).shape.end()),output_tensors->at(1).getPtrWithOffset(self_key_cache_offset)}},{"value_cache",Tensor{MEMORY_GPU,data_type,std::vector<size_t>(output_tensors->at(2).shape.begin() + 1, output_tensors->at(2).shape.end()),output_tensors->at(2).getPtrWithOffset<T>(self_value_cache_offset)}}};self_attention_layer_->forward(&self_attention_output_tensors,&self_attention_input_tensors,&decoder_layer_weight->at(l).self_attention_weights);

这里以map的方式对输入输出tensor进行了封装,再调用self_attention_layer层进行推理,详细介绍见:进击的Killua:FasterTransformer Decoding 源码分析(四)-SelfAttention实现介绍。

Add Bias & Add Res & LayerNorm

        invokeGeneralAddBiasResidualPreLayerNorm(self_attn_output_,normed_self_attn_output_,self_attn_output_,decoder_input,decoder_layer_weight->at(l).self_attn_layernorm_weights.gamma,decoder_layer_weight->at(l).self_attn_layernorm_weights.beta,decoder_layer_weight->at(l).self_attention_weights.attention_output_weight.bias,layernorm_eps_,batch_size,hidden_units_,(float*)nullptr,(float*)nullptr,(float*)nullptr,(float*)nullptr,0,stream_);sync_check_cuda_error();

这里将add bias、add res和laynorm操作合成一个kernel进行处理,也是优化的经典方法,文章进击的Killua:FasterTransformer Decoding 源码分析(五)-AddBiasResidualLayerNorm介绍 做了详细介绍。

CrossAttention

        TensorMap cross_attention_input_tensors{{"input_query", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, normed_self_attn_output_}},{"encoder_output", input_tensors->at(1)},{"encoder_sequence_length", input_tensors->at(2)},{"finished", input_tensors->at(3)},{"step", input_tensors->at(4)}};TensorMap cross_attention_output_tensors{{"hidden_features", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, cross_attn_output_}},{"key_cache",Tensor{MEMORY_GPU,data_type,std::vector<size_t>(output_tensors->at(3).shape.begin() + 1, output_tensors->at(3).shape.end()),output_tensors->at(3).getPtrWithOffset<T>(mem_cache_offset)}},{"value_cache",Tensor{MEMORY_GPU,data_type,std::vector<size_t>(output_tensors->at(4).shape.begin() + 1, output_tensors->at(4).shape.end()),output_tensors->at(4).getPtrWithOffset<T>(mem_cache_offset)}}};cross_attention_layer_->forward(&cross_attention_output_tensors,&cross_attention_input_tensors,&decoder_layer_weight->at(l).cross_attention_weights);

这里以map的方式对输入输出tensor进行了封装,再调用cross_attention_layer层进行推理,详见文章:进击的Killua:FasterTransformer Decoding 源码分析(六)-CrossAttention介绍

Add Bias & Add Res & LayerNorm

        invokeGeneralAddBiasResidualPreLayerNorm(cross_attn_output_,normed_cross_attn_output_,cross_attn_output_,self_attn_output_,decoder_layer_weight->at(l).cross_attn_layernorm_weights.gamma,decoder_layer_weight->at(l).cross_attn_layernorm_weights.beta,decoder_layer_weight->at(l).cross_attention_weights.attention_output_weight.bias,layernorm_eps_,batch_size,hidden_units_,(float*)nullptr,(float*)nullptr,(float*)nullptr,(float*)nullptr,0,stream_);sync_check_cuda_error();

和上述类似。

FFN

        TensorMap ffn_input_tensors({{"ffn_input", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, normed_cross_attn_output_}}});TensorMap ffn_output_tensors({{"ffn_output", Tensor{MEMORY_GPU, data_type, {batch_size, hidden_units_}, decoder_output}}});ffn_layer_->forward(&ffn_output_tensors, &ffn_input_tensors, &decoder_layer_weight->at(l).ffn_weights);

FFN详细介绍如下文所示。

进击的Killua:FasterTransformer Decoding 源码分析(七)-FFNLayer MoE(上篇)

进击的Killua:FasterTransformer Decoding 源码分析(八)-FFNLayer MoE(下篇)

Add Bias & Add Res

        invokeAddBiasResidual(decoder_output,cross_attn_output_,decoder_layer_weight->at(l).ffn_weights.output_weight.bias,batch_size,hidden_units_,stream_);sync_check_cuda_error();

这里将add bias、add res操作合成一个kernel进行处理,属于fused op的常用操作。

三、总结

总体来看fastertransformer的decoder主要用了小OP融合、大OP重写、重复计算缓存化这几个优化策略来进行加速,接下来开始逐步剖析内部细节。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于GiantPandaCV | FasterTransformer Decoding 源码分析(二)-Decoder框架介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/959424

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑