代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向

本文主要是介绍代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:5.1—5.3放假。

本文目录

  • 491.递增子序列
    • 做题
    • 看文章
  • 46.全排列
    • 做题
    • 看文章
  • 47.全排列 II
    • 做题
    • 看文章
  • 以往忽略的知识点小结
  • 个人体会

491.递增子序列

代码随想录:491.递增子序列
Leetcode:491.递增子序列

做题

写了一会,但捋不出思路。可能是先找出局部最大递增序列,如何再回溯?

看文章

自己的思路有问题。首先,是在保存path时不能return,否则取不全。其次,在每层可以用set去重。看代码其实思路很简单,但就是逻辑需要梳理好。我自己理解的大概思路就是,以nums的每一个树都作为头结点,然后往下遍历,只要满足条件,加入path,就保存,否则就退出,进行下一个头结点的遍历。
还有一点:本题是求递增子序列!不是求连续递增子序列! 之前一直在想连续的事情,还是要看好题目要求!

class Solution:def findSubsequences(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):if len(path) > 1:result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集# 注意这里不要加return,要取树上的节点uset = set()  # 使用集合对本层元素进行去重for i in range(startIndex, len(nums)):if (path and nums[i] < path[-1]) or nums[i] in uset:continueuset.add(nums[i])  # 记录这个元素在本层用过了,本层后面不能再用了path.append(nums[i])self.backtracking(nums, i + 1, path, result)path.pop()

时间复杂度: O(n * 2^n)
空间复杂度: O(n)

前面是用set去重,这里考虑到题目条件:-100 <= nums[i] <= 100,可以用哈希表代替set做去重来优化。代码如下:

class Solution:def findSubsequences(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):if len(path) > 1:result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集used = [0] * 201  # 使用数组来进行去重操作,题目说数值范围[-100, 100]for i in range(startIndex, len(nums)):if (path and nums[i] < path[-1]) or used[nums[i] + 100] == 1:continue  # 如果当前元素小于上一个元素,或者已经使用过当前元素,则跳过当前元素used[nums[i] + 100] = 1  # 标记当前元素已经使用过path.append(nums[i])  # 将当前元素加入当前递增子序列self.backtracking(nums, i + 1, path, result)path.pop()

46.全排列

代码随想录:46.全排列
Leetcode:46.全排列

做题

class Solution:def permute(self, nums: List[int]) -> List[List[int]]:self.size = len(nums)self.res = []self.path = []used = set()self.backtracking(nums, used)return self.resdef backtracking(self, nums, used):if len(self.path) == self.size:self.res.append(self.path[:])returnfor i in range(self.size):if nums[i] not in used:used.add(nums[i])self.path.append(nums[i])self.backtracking(nums, used)self.path.pop()used.remove(nums[i])       

看文章

用数组代替set,可以降低空间复杂度为O(n)。
时间复杂度: O(n!)
空间复杂度: O(n)

47.全排列 II

代码随想录:47.全排列 II
Leetcode:47.全排列 II

做题

调了半小时之后AC了,使用used数组记录已经使用过的数,使用used_level集合记录一层内使用过的数。代码如下:

class Solution:def permuteUnique(self, nums: List[int]) -> List[List[int]]:self.size = len(nums)self.res = []self.path = []used = [0] * self.sizeself.backtracking(nums, used)return self.resdef backtracking(self, nums, used):if len(self.path) == self.size:self.res.append(self.path[:])returnused_level = set()for i in range(self.size):if used[i] == 0 and nums[i] not in used_level:self.path.append(nums[i])used[i] = 1used_level.add(nums[i])self.backtracking(nums, used)used[i] = 0self.path.pop()

看文章

对于树层内去重,可以仍然使用used数组(数组内遍历为bool)。判断逻辑为:

if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:continue

以[1, 1, 1, 2]为例:如果已经取了nums[0],此时used = [True, False, False, False],那么第2层可以取nums[1];如果没取nums[0],此时used = [False, False, False, False],那么第1层不能取nums[1],因为nums[1] == nums[0],而nums[0]已经是被append然后pop的。

完整代码如下:

class Solution:def permuteUnique(self, nums):nums.sort()  # 排序result = []self.backtracking(nums, [], [False] * len(nums), result)return resultdef backtracking(self, nums, path, used, result):if len(path) == len(nums):result.append(path[:])returnfor i in range(len(nums)):if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:continueused[i] = Truepath.append(nums[i])self.backtracking(nums, path, used, result)path.pop()used[i] = False

时间复杂度: O(n! * n)。最差情况:所有元素都是唯一的,对于 n 个元素一共有 n! 中排列方案,而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
空间复杂度: O(n)

以往忽略的知识点小结

  • used数组的灵活应用:替代set;树层内去重
  • 出现“连续”字眼才需考虑“连续”

个人体会

完成时间:2h40min。
心得:看好题目要求;需要学会灵活使用used数组。

这篇关于代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/959140

相关文章

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1