代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向

本文主要是介绍代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:5.1—5.3放假。

本文目录

  • 491.递增子序列
    • 做题
    • 看文章
  • 46.全排列
    • 做题
    • 看文章
  • 47.全排列 II
    • 做题
    • 看文章
  • 以往忽略的知识点小结
  • 个人体会

491.递增子序列

代码随想录:491.递增子序列
Leetcode:491.递增子序列

做题

写了一会,但捋不出思路。可能是先找出局部最大递增序列,如何再回溯?

看文章

自己的思路有问题。首先,是在保存path时不能return,否则取不全。其次,在每层可以用set去重。看代码其实思路很简单,但就是逻辑需要梳理好。我自己理解的大概思路就是,以nums的每一个树都作为头结点,然后往下遍历,只要满足条件,加入path,就保存,否则就退出,进行下一个头结点的遍历。
还有一点:本题是求递增子序列!不是求连续递增子序列! 之前一直在想连续的事情,还是要看好题目要求!

class Solution:def findSubsequences(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):if len(path) > 1:result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集# 注意这里不要加return,要取树上的节点uset = set()  # 使用集合对本层元素进行去重for i in range(startIndex, len(nums)):if (path and nums[i] < path[-1]) or nums[i] in uset:continueuset.add(nums[i])  # 记录这个元素在本层用过了,本层后面不能再用了path.append(nums[i])self.backtracking(nums, i + 1, path, result)path.pop()

时间复杂度: O(n * 2^n)
空间复杂度: O(n)

前面是用set去重,这里考虑到题目条件:-100 <= nums[i] <= 100,可以用哈希表代替set做去重来优化。代码如下:

class Solution:def findSubsequences(self, nums):result = []path = []self.backtracking(nums, 0, path, result)return resultdef backtracking(self, nums, startIndex, path, result):if len(path) > 1:result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集used = [0] * 201  # 使用数组来进行去重操作,题目说数值范围[-100, 100]for i in range(startIndex, len(nums)):if (path and nums[i] < path[-1]) or used[nums[i] + 100] == 1:continue  # 如果当前元素小于上一个元素,或者已经使用过当前元素,则跳过当前元素used[nums[i] + 100] = 1  # 标记当前元素已经使用过path.append(nums[i])  # 将当前元素加入当前递增子序列self.backtracking(nums, i + 1, path, result)path.pop()

46.全排列

代码随想录:46.全排列
Leetcode:46.全排列

做题

class Solution:def permute(self, nums: List[int]) -> List[List[int]]:self.size = len(nums)self.res = []self.path = []used = set()self.backtracking(nums, used)return self.resdef backtracking(self, nums, used):if len(self.path) == self.size:self.res.append(self.path[:])returnfor i in range(self.size):if nums[i] not in used:used.add(nums[i])self.path.append(nums[i])self.backtracking(nums, used)self.path.pop()used.remove(nums[i])       

看文章

用数组代替set,可以降低空间复杂度为O(n)。
时间复杂度: O(n!)
空间复杂度: O(n)

47.全排列 II

代码随想录:47.全排列 II
Leetcode:47.全排列 II

做题

调了半小时之后AC了,使用used数组记录已经使用过的数,使用used_level集合记录一层内使用过的数。代码如下:

class Solution:def permuteUnique(self, nums: List[int]) -> List[List[int]]:self.size = len(nums)self.res = []self.path = []used = [0] * self.sizeself.backtracking(nums, used)return self.resdef backtracking(self, nums, used):if len(self.path) == self.size:self.res.append(self.path[:])returnused_level = set()for i in range(self.size):if used[i] == 0 and nums[i] not in used_level:self.path.append(nums[i])used[i] = 1used_level.add(nums[i])self.backtracking(nums, used)used[i] = 0self.path.pop()

看文章

对于树层内去重,可以仍然使用used数组(数组内遍历为bool)。判断逻辑为:

if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:continue

以[1, 1, 1, 2]为例:如果已经取了nums[0],此时used = [True, False, False, False],那么第2层可以取nums[1];如果没取nums[0],此时used = [False, False, False, False],那么第1层不能取nums[1],因为nums[1] == nums[0],而nums[0]已经是被append然后pop的。

完整代码如下:

class Solution:def permuteUnique(self, nums):nums.sort()  # 排序result = []self.backtracking(nums, [], [False] * len(nums), result)return resultdef backtracking(self, nums, path, used, result):if len(path) == len(nums):result.append(path[:])returnfor i in range(len(nums)):if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:continueused[i] = Truepath.append(nums[i])self.backtracking(nums, path, used, result)path.pop()used[i] = False

时间复杂度: O(n! * n)。最差情况:所有元素都是唯一的,对于 n 个元素一共有 n! 中排列方案,而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
空间复杂度: O(n)

以往忽略的知识点小结

  • used数组的灵活应用:替代set;树层内去重
  • 出现“连续”字眼才需考虑“连续”

个人体会

完成时间:2h40min。
心得:看好题目要求;需要学会灵活使用used数组。

这篇关于代码随想录算法训练营Day29 | 491.递增子序列、46.全排列、47.全排列 II | Python | 个人记录向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959140

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(