【深度学习】第一门课 神经网络和深度学习 Week 3 浅层神经网络

2024-05-04 05:36

本文主要是介绍【深度学习】第一门课 神经网络和深度学习 Week 3 浅层神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🚀Write In Front🚀
📝个人主页:令夏二十三
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝
📣系列专栏:深度学习
💬总结:希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🖊

文章目录

3.1 神经网络概述

3.2 神经网络的表示

3.3 计算一个神经网络的输出

3.3.1 神经网络的符号惯例

3.3.2 神经网络的计算

3.4 多样本向量化

3.5 向量化实现的解释

3.6 激活函数

3.11 随机初始化


3.1 神经网络概述

本周的学习目标是实现一个神经网络,现在我们预览一下这周将要学习的内容。

上面讲了逻辑回归模型,也就是多个输入进入一个模型中,得到一个输出,由于模型中包含Sigmoid函数,因此输出为 0 或 1 。

 这样的一个模型在神经网络中只是一个节点:

 注意, [ i ] 表示第 i 层,( i ) 表示第 i  个训练样本,不能搞混了。

一个神经网络会包含很多层,其实道理跟最简单的逻辑回归模型是一样的,都是从左到右做前向传播,由特征值得到最终结果预测值,训练的话,从右往左依次求导,就可以对参数进行更新。

3.2 神经网络的表示

  • 输入层:图中最左侧的输入特征 x1、x2、x3 组成的一层称为输入层,也就是这个神经网络的输入。
  • 隐藏层:在神经网络的训练中,我们用到的训练集只包含输入层和输出层的数据,而神经网络中的的数据是看不到的,但是它们又确实存在,于是称之为隐藏层。
  • 输出层:在图中,这个神经网络只有一个 y^ 作为输出,它是由一个节点输出的,这个节点就是这个神经网络的输出层。

神经网络中,每一个输入都可以使用带上角标 [ i ] 的 a 来表示,由于上一层的节点被激活后才会有输出,于是这里的 a 表示下一层节点输入的激活值(Active Value)。

在这个示例里,输出层的每个输入特征都可以写成 a ,表示输入层的激活值,其上角标都为 [ 0 ];

在隐藏层,我们可以看到有四个节点,于是就会有四个激活值从节点输出,并输入到下一层,这里的激活值 a 的上角标都为 [ 1 ] ,在代码中,我们把这一层的激活值集合到一个列向量里,如图所示:

最后的输出层产生的数值,也就是 y^,我们将其取值为 上角标为 [ 2 ] 的激活值 a。

在深度学习领域,神经网络的层数是不包含输入层的,于是我们把这个示例称为一个两层的神经网络。

3.3 计算一个神经网络的输出

3.3.1 神经网络的符号惯例

  • x :输入特征
  • a :每个神经元的输出
  • W :特征的权重
  • 上标 [ i ] :神经网络的第 i 层
  • 下标 i :该层神经网络的第 i 个神经元

3.3.2 神经网络的计算

其实就跟之前提到的逻辑回归是一样的,首先计算 z,再套用 Sigmoid 函数计算出 a,一个神经网络只是这样做了好多次重复计算。

 回到前面的示例,我们有了输入后,就可以计算隐藏层的激活值:

 在代码中,我们可以利用矩阵运算(向量化)来缩短计算时间:

总而言之,在这里我们只要做下面这四个计算:

 通过这些公式,我们可以根据给出的一个单独的输入特征向量计算出一个简单神经网络的输出。

3.4 多样本向量化

神经网络训练中涉及到很多输入样本,我们需要把这些输入样本集成到一个矩阵中,这样就可以实现更加方便的计算,通过矩阵运算可以同时对所有样本进行预测值的求解,矩阵如下:

 从水平上看,矩阵代表了 m 个训练样本,从竖直上看,矩阵的不同 [ i ] 索引对应了不同的隐藏单元。

3.5 向量化实现的解释

使用上面的方法得到矩阵和向量后就可以使用先前的公式进行 z 的计算了:

矩阵乘以列向量,最终得到的是列向量,再通过向量和常数的加法,加上 b,也就得到了最终的 z。

3.6 激活函数

训练一个神经网络时,需要决定使用哪种激活函数用在隐藏层上,哪种用在输出层上。激活函数有很多,上面只提到了 Sigmoid 函数,但其实还有其他的,有时候用起来更好。

 选择激活函数的经验:

  • 对于二分类问题,输出层选择 Sigmoid 函数,然后其他的所有单元都选择 Relu 函数;
  • 如果在隐藏层上不确定使用哪个激活函数,那就用 Relu 函数。

要注意的区别:

  • 在实践中,使用 Relu 函数激活的神经网络通常比用 sigmoid 或 tanh 函数激活的学习地更快;
  • sigmoid 函数和 tanh 函数在正负饱和区的梯度都接近于0,这会造成梯度弥散,而 Relu 函数和 Leaky Relu 函数大于0部分都为常数,不会产生梯度弥散现象。

3.11 随机初始化

我们在训练神经网络的时候,权重随机初始化是很重要的,因为如果所有节点输出的权重值一样的话,同一层下的所有节点将会是一模一样的,那样设置这些节点就没有意义。

这篇关于【深度学习】第一门课 神经网络和深度学习 Week 3 浅层神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958427

相关文章

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学