mapreduce中实现对hbase中表数据的添加

2024-05-03 23:38

本文主要是介绍mapreduce中实现对hbase中表数据的添加,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 参考网址:http://www.javabloger.com/article/hadoop-mapreduce-hbase.html

       根据参考网址中的小实例,自己亲自实现了一下,记录一下自己对该程序的一些理解。

       实例:先将数据文件上传到HDFS,然后用MapReduce进行处理,将处理后的数据插入到hbase中。代码如下:

       首先是Mapper:

复制代码
复制代码
package txt_to_hbase;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class THMapper extends Mapper<LongWritable,Text,Text,Text>{
public void map(LongWritable key,Text value,Context context){
String[] items = value.toString().split(" ");
String k = items[0];
String v = items[1];
System.out.println("key:"+k+","+"value:"+v);
try {

context.write(new Text(k), new Text(v));

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}
复制代码
复制代码

  然后是Reduce:

复制代码
复制代码
package txt_to_hbase;

import java.io.IOException;

import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.Text;

public class THReducer extends TableReducer<Text,Text,ImmutableBytesWritable>{
public void reduce(Text key,Iterable<Text> value,Context context){
String k = key.toString();
String v = value.iterator().next().toString(); //由数据知道value就只有一行
Put putrow = new Put(k.getBytes());
putrow.add("f1".getBytes(), "qualifier".getBytes(), v.getBytes());
try {

context.write(new ImmutableBytesWritable(key.getBytes()), putrow);

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

}

}
复制代码
复制代码

  然后是Driver:

复制代码
复制代码
package txt_to_hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.Tool;

public class THDriver extends Configured implements Tool{

@Override
public int run(String[] arg0) throws Exception {
// TODO Auto-generated method stub
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum.", "localhost"); //千万别忘记配置

Job job = new Job(conf,"Txt-to-Hbase");
job.setJarByClass(TxtHbase.class);

Path in = new Path("/home/daisy/inout/txthbase/");

job.setInputFormatClass(TextInputFormat.class);
FileInputFormat.addInputPath(job, in);

job.setMapperClass(THMapper.class);
job.setReducerClass(THReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);

TableMapReduceUtil.initTableReducerJob("tab1", THReducer.class, job);

job.waitForCompletion(true);
return 0;
}

}
复制代码
复制代码

  最后是主类:

复制代码
复制代码
package txt_to_hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.ToolRunner;

public class TxtHbase {
public static void main(String [] args) throws Exception{
int mr;
mr = ToolRunner.run(new Configuration(),new THDriver(),args);
System.exit(mr);
}
}
复制代码
复制代码


  输入文件是3个txt文件,每个txt中的文件内容均是如下格式:

复制代码
1 name1--txt1-www.javabloger.com

2 name2--txt1

3 name3--txt1

4 name4--txt1

5 name5--txt1
复制代码

  通过以上代码,mapreduce实现之后,在hbase的shell中查看tab1表,如下:

复制代码
复制代码
hbase(main):009:0> scan 'tab1'
ROW COLUMN+CELL
1 column=f1:qualifier, timestamp=1320235555118, value=name1--txt1-www.javabloger.com
10 column=f1:qualifier, timestamp=1320235555118, value=name10--txt2
11 column=f1:qualifier, timestamp=1320235555118, value=name11--txt3-www.javabloger.com
12 column=f1:qualifier, timestamp=1320235555118, value=name12--txt3
13 column=f1:qualifier, timestamp=1320235555118, value=name13--txt3
14 column=f1:qualifier, timestamp=1320235555118, value=name14--txt3
15 column=f1:qualifier, timestamp=1320235555118, value=name15--txt3
2 column=f1:qualifier, timestamp=1320235555118, value=name2--txt1
3 column=f1:qualifier, timestamp=1320235555118, value=name3--txt1
4 column=f1:qualifier, timestamp=1320235555118, value=name4--txt1
5 column=f1:qualifier, timestamp=1320235555118, value=name5--txt1
6 column=f1:qualifier, timestamp=1320235555118, value=name6--txt2-www.javabloger.com
7 column=f1:qualifier, timestamp=1320235555118, value=name7--txt2
8 column=f1:qualifier, timestamp=1320235555118, value=name8--txt2
9 column=f1:qualifier, timestamp=1320235555118, value=name9--txt2
15 row(s) in 0.0570 seconds
复制代码
复制代码

  Map跟普通的mapreduce函数没有多大区别,正常的TextInputFormat方式输入,按行读取。

       Reduce中要把处理之后的结果写入hbase的表中,所以与普通的mapreduce程序有些区别,由以上代码可以知道,reduce类继承的是TableReducer,通过查询API(如下图1)知道,它也是一种基本的Reducer类,与其他的reduce类一样,它的输入k/v对是对应Map的输出k/v对,它的输出key可以是任意的类型,但是value必须是一个put或delete实例。

                                                                        图1:TableReducer类详解  

  Reduce的输出key是ImmutableWritable类型(org.apache.hadoop.hase.io),API中的解释,它是一个可以用作key或value类型的字节序列,该类型基于BytesWritable,不能调整大小。Reduce的输出value是一个put。如上面代码:   context.write(new ImmutableBytesWritable(key.getBytes())putrow);

       Driver中job配置的时候没有设置 job.setReduceClass(); 而是用 TableMapReduceUtil.initTableReducerJob("tab1", THReducer.class, job); 来执行reduce类。

       TableMapReduceUtil类(org.apache.hadoop.hbase.mapreduce):a utility for TableMapper or TableReducer。因为本例子中的reduce继承的是TableReducer,所以也就解释了用TableMapReduceUtil来执行的原因。该类的方法有:addDependencyJars(),initTableMapperJob(),initTableReducerJob(),limitNumReduceTasks(),setNumReduceTasks()等,详细包括参数等可以查看API。

       同时注意本程序代码的格式,将Map,Reduce,以及Job的配置分离,比较清晰。之前写代码喜欢把map,reduce 以及job配置全都写在一个类中,可能这是一种不太好的习惯。这里注意Driver类,要继承 Configured 类和实现 Tool 接口,以及实现Tool中的run方法,在run方法中对job进行配置。 同时main函数中用ToolRunner.run() 方法来调用Driver类。

       本人的一点理解,如有错误,欢迎指正,也欢迎大家一起交流mapreduce编程的知识,我的email:dongtingting8877@163.com  。


这篇关于mapreduce中实现对hbase中表数据的添加的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957904

相关文章

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定