政安晨:【Keras机器学习示例演绎】(二十九)—— 利用卷积 LSTM 进行下一帧视频预测

本文主要是介绍政安晨:【Keras机器学习示例演绎】(二十九)—— 利用卷积 LSTM 进行下一帧视频预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简介

设置

数据集构建

数据可视化

模型构建

模型训练

帧预测可视化

预测视频


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:如何建立和训练用于下一帧视频预测的卷积 LSTM 模型。

简介


卷积 LSTM 架构通过在 LSTM 层中引入卷积递归单元,将时间序列处理和计算机视觉结合在一起。在本示例中,我们将探讨卷积 LSTM 模型在下一帧预测中的应用,下一帧预测是指在一系列过去帧的基础上预测下一个视频帧的过程。

设置

import numpy as np
import matplotlib.pyplot as pltimport keras
from keras import layersimport io
import imageio
from IPython.display import Image, display
from ipywidgets import widgets, Layout, HBox

数据集构建


在本例中,我们将使用移动 MNIST 数据集。

我们将下载该数据集,然后构建并预处理训练集和验证集。

对于下一帧预测,我们的模型将使用前一帧(我们称之为 f_n)来预测新一帧(称之为 f_(n + 1))。为了让模型能够创建这些预测,我们需要处理数据,使输入和输出 "移位",其中输入数据为帧 x_n,用于预测帧 y_(n + 1)。

# Download and load the dataset.
fpath = keras.utils.get_file("moving_mnist.npy","http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy",
)
dataset = np.load(fpath)# Swap the axes representing the number of frames and number of data samples.
dataset = np.swapaxes(dataset, 0, 1)
# We'll pick out 1000 of the 10000 total examples and use those.
dataset = dataset[:1000, ...]
# Add a channel dimension since the images are grayscale.
dataset = np.expand_dims(dataset, axis=-1)# Split into train and validation sets using indexing to optimize memory.
indexes = np.arange(dataset.shape[0])
np.random.shuffle(indexes)
train_index = indexes[: int(0.9 * dataset.shape[0])]
val_index = indexes[int(0.9 * dataset.shape[0]) :]
train_dataset = dataset[train_index]
val_dataset = dataset[val_index]# Normalize the data to the 0-1 range.
train_dataset = train_dataset / 255
val_dataset = val_dataset / 255# We'll define a helper function to shift the frames, where
# `x` is frames 0 to n - 1, and `y` is frames 1 to n.
def create_shifted_frames(data):x = data[:, 0 : data.shape[1] - 1, :, :]y = data[:, 1 : data.shape[1], :, :]return x, y# Apply the processing function to the datasets.
x_train, y_train = create_shifted_frames(train_dataset)
x_val, y_val = create_shifted_frames(val_dataset)# Inspect the dataset.
print("Training Dataset Shapes: " + str(x_train.shape) + ", " + str(y_train.shape))
print("Validation Dataset Shapes: " + str(x_val.shape) + ", " + str(y_val.shape))

演绎展示:

Downloading data from http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy819200096/819200096 ━━━━━━━━━━━━━━━━━━━━ 116s 0us/step
Training Dataset Shapes: (900, 19, 64, 64, 1), (900, 19, 64, 64, 1)
Validation Dataset Shapes: (100, 19, 64, 64, 1), (100, 19, 64, 64, 1)

数据可视化

我们的数据由一系列的帧组成,每个帧都用于预测即将到来的帧。让我们来看一些这些连续帧。

# Construct a figure on which we will visualize the images.
fig, axes = plt.subplots(4, 5, figsize=(10, 8))# Plot each of the sequential images for one random data example.
data_choice = np.random.choice(range(len(train_dataset)), size=1)[0]
for idx, ax in enumerate(axes.flat):ax.imshow(np.squeeze(train_dataset[data_choice][idx]), cmap="gray")ax.set_title(f"Frame {idx + 1}")ax.axis("off")# Print information and display the figure.
print(f"Displaying frames for example {data_choice}.")
plt.show()
Displaying frames for example 95.

模型构建

为了构建一个卷积LSTM模型,我们将使用ConvLSTM2D层,该层将接受形状为(batch_size,num_frames,width,height,channels)的输入,并返回相同形状的预测电影。

# Construct the input layer with no definite frame size.
inp = layers.Input(shape=(None, *x_train.shape[2:]))# We will construct 3 `ConvLSTM2D` layers with batch normalization,
# followed by a `Conv3D` layer for the spatiotemporal outputs.
x = layers.ConvLSTM2D(filters=64,kernel_size=(5, 5),padding="same",return_sequences=True,activation="relu",
)(inp)
x = layers.BatchNormalization()(x)
x = layers.ConvLSTM2D(filters=64,kernel_size=(3, 3),padding="same",return_sequences=True,activation="relu",
)(x)
x = layers.BatchNormalization()(x)
x = layers.ConvLSTM2D(filters=64,kernel_size=(1, 1),padding="same",return_sequences=True,activation="relu",
)(x)
x = layers.Conv3D(filters=1, kernel_size=(3, 3, 3), activation="sigmoid", padding="same"
)(x)# Next, we will build the complete model and compile it.
model = keras.models.Model(inp, x)
model.compile(loss=keras.losses.binary_crossentropy,optimizer=keras.optimizers.Adam(),
)

模型训练


有了模型和数据,我们就可以训练模型了。

# Define some callbacks to improve training.
early_stopping = keras.callbacks.EarlyStopping(monitor="val_loss", patience=10)
reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor="val_loss", patience=5)# Define modifiable training hyperparameters.
epochs = 20
batch_size = 5# Fit the model to the training data.
model.fit(x_train,y_train,batch_size=batch_size,epochs=epochs,validation_data=(x_val, y_val),callbacks=[early_stopping, reduce_lr],
)

演绎展示:

Epoch 1/20180/180 ━━━━━━━━━━━━━━━━━━━━ 50s 226ms/step - loss: 0.1510 - val_loss: 0.2966 - learning_rate: 0.0010
Epoch 2/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0287 - val_loss: 0.1766 - learning_rate: 0.0010
Epoch 3/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0269 - val_loss: 0.0661 - learning_rate: 0.0010
Epoch 4/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0264 - val_loss: 0.0279 - learning_rate: 0.0010
Epoch 5/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0258 - val_loss: 0.0254 - learning_rate: 0.0010
Epoch 6/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0256 - val_loss: 0.0253 - learning_rate: 0.0010
Epoch 7/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0251 - val_loss: 0.0248 - learning_rate: 0.0010
Epoch 8/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0251 - val_loss: 0.0251 - learning_rate: 0.0010
Epoch 9/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0247 - val_loss: 0.0243 - learning_rate: 0.0010
Epoch 10/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0246 - val_loss: 0.0246 - learning_rate: 0.0010
Epoch 11/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0245 - val_loss: 0.0247 - learning_rate: 0.0010
Epoch 12/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0241 - val_loss: 0.0243 - learning_rate: 0.0010
Epoch 13/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0244 - val_loss: 0.0245 - learning_rate: 0.0010
Epoch 14/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0241 - val_loss: 0.0241 - learning_rate: 0.0010
Epoch 15/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0243 - val_loss: 0.0241 - learning_rate: 0.0010
Epoch 16/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0242 - val_loss: 0.0242 - learning_rate: 0.0010
Epoch 17/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0240 - val_loss: 0.0240 - learning_rate: 0.0010
Epoch 18/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0240 - val_loss: 0.0243 - learning_rate: 0.0010
Epoch 19/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0240 - val_loss: 0.0244 - learning_rate: 0.0010
Epoch 20/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0237 - val_loss: 0.0238 - learning_rate: 1.0000e-04<keras.src.callbacks.history.History at 0x7ff294f9c340>

帧预测可视化


在构建并训练好模型后,我们可以根据新视频生成一些帧预测示例。

我们将从验证集中随机挑选一个示例,然后从中选择前十个帧。在此基础上,我们可以让模型预测 10 个新帧,并将其与地面实况帧预测进行比较。

# Select a random example from the validation dataset.
example = val_dataset[np.random.choice(range(len(val_dataset)), size=1)[0]]# Pick the first/last ten frames from the example.
frames = example[:10, ...]
original_frames = example[10:, ...]# Predict a new set of 10 frames.
for _ in range(10):# Extract the model's prediction and post-process it.new_prediction = model.predict(np.expand_dims(frames, axis=0))new_prediction = np.squeeze(new_prediction, axis=0)predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)# Extend the set of prediction frames.frames = np.concatenate((frames, predicted_frame), axis=0)# Construct a figure for the original and new frames.
fig, axes = plt.subplots(2, 10, figsize=(20, 4))# Plot the original frames.
for idx, ax in enumerate(axes[0]):ax.imshow(np.squeeze(original_frames[idx]), cmap="gray")ax.set_title(f"Frame {idx + 11}")ax.axis("off")# Plot the new frames.
new_frames = frames[10:, ...]
for idx, ax in enumerate(axes[1]):ax.imshow(np.squeeze(new_frames[idx]), cmap="gray")ax.set_title(f"Frame {idx + 11}")ax.axis("off")# Display the figure.
plt.show()
 1/1 ━━━━━━━━━━━━━━━━━━━━ 2s 2s/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 800ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 805ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 790ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 821ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 824ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 928ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 813ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 810ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 814ms/step

预测视频


最后,我们将从验证集中挑选几个例子,用它们制作一些 GIF,看看模型预测的视频。

你可以使用 Hugging Face Hub 上托管的训练有素的模型,也可以在 Hugging Face Spaces 上尝试演示。

# Select a few random examples from the dataset.
examples = val_dataset[np.random.choice(range(len(val_dataset)), size=5)]# Iterate over the examples and predict the frames.
predicted_videos = []
for example in examples:# Pick the first/last ten frames from the example.frames = example[:10, ...]original_frames = example[10:, ...]new_predictions = np.zeros(shape=(10, *frames[0].shape))# Predict a new set of 10 frames.for i in range(10):# Extract the model's prediction and post-process it.frames = example[: 10 + i + 1, ...]new_prediction = model.predict(np.expand_dims(frames, axis=0))new_prediction = np.squeeze(new_prediction, axis=0)predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)# Extend the set of prediction frames.new_predictions[i] = predicted_frame# Create and save GIFs for each of the ground truth/prediction images.for frame_set in [original_frames, new_predictions]:# Construct a GIF from the selected video frames.current_frames = np.squeeze(frame_set)current_frames = current_frames[..., np.newaxis] * np.ones(3)current_frames = (current_frames * 255).astype(np.uint8)current_frames = list(current_frames)# Construct a GIF from the frames.with io.BytesIO() as gif:imageio.mimsave(gif, current_frames, "GIF", duration=200)predicted_videos.append(gif.getvalue())# Display the videos.
print(" Truth\tPrediction")
for i in range(0, len(predicted_videos), 2):# Construct and display an `HBox` with the ground truth and prediction.box = HBox([widgets.Image(value=predicted_videos[i]),widgets.Image(value=predicted_videos[i + 1]),])display(box)
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 790ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 10ms/stepTruth  PredictionHBox(children=(Image(value=b'GIF89a@\x00@\x00\x87\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xf8\…HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfd\xfd\xfd\xfc\xfc\xfc\xfb\xfb\xfb\xf4\…HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xfb\…HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xfb\…HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfd\xfd\xfd\xfc\xfc\xfc\xf9\xf9\xf9\xf7\…

这篇关于政安晨:【Keras机器学习示例演绎】(二十九)—— 利用卷积 LSTM 进行下一帧视频预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956496

相关文章

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I