政安晨:【Keras机器学习示例演绎】(二十九)—— 利用卷积 LSTM 进行下一帧视频预测

本文主要是介绍政安晨:【Keras机器学习示例演绎】(二十九)—— 利用卷积 LSTM 进行下一帧视频预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简介

设置

数据集构建

数据可视化

模型构建

模型训练

帧预测可视化

预测视频


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:如何建立和训练用于下一帧视频预测的卷积 LSTM 模型。

简介


卷积 LSTM 架构通过在 LSTM 层中引入卷积递归单元,将时间序列处理和计算机视觉结合在一起。在本示例中,我们将探讨卷积 LSTM 模型在下一帧预测中的应用,下一帧预测是指在一系列过去帧的基础上预测下一个视频帧的过程。

设置

import numpy as np
import matplotlib.pyplot as pltimport keras
from keras import layersimport io
import imageio
from IPython.display import Image, display
from ipywidgets import widgets, Layout, HBox

数据集构建


在本例中,我们将使用移动 MNIST 数据集。

我们将下载该数据集,然后构建并预处理训练集和验证集。

对于下一帧预测,我们的模型将使用前一帧(我们称之为 f_n)来预测新一帧(称之为 f_(n + 1))。为了让模型能够创建这些预测,我们需要处理数据,使输入和输出 "移位",其中输入数据为帧 x_n,用于预测帧 y_(n + 1)。

# Download and load the dataset.
fpath = keras.utils.get_file("moving_mnist.npy","http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy",
)
dataset = np.load(fpath)# Swap the axes representing the number of frames and number of data samples.
dataset = np.swapaxes(dataset, 0, 1)
# We'll pick out 1000 of the 10000 total examples and use those.
dataset = dataset[:1000, ...]
# Add a channel dimension since the images are grayscale.
dataset = np.expand_dims(dataset, axis=-1)# Split into train and validation sets using indexing to optimize memory.
indexes = np.arange(dataset.shape[0])
np.random.shuffle(indexes)
train_index = indexes[: int(0.9 * dataset.shape[0])]
val_index = indexes[int(0.9 * dataset.shape[0]) :]
train_dataset = dataset[train_index]
val_dataset = dataset[val_index]# Normalize the data to the 0-1 range.
train_dataset = train_dataset / 255
val_dataset = val_dataset / 255# We'll define a helper function to shift the frames, where
# `x` is frames 0 to n - 1, and `y` is frames 1 to n.
def create_shifted_frames(data):x = data[:, 0 : data.shape[1] - 1, :, :]y = data[:, 1 : data.shape[1], :, :]return x, y# Apply the processing function to the datasets.
x_train, y_train = create_shifted_frames(train_dataset)
x_val, y_val = create_shifted_frames(val_dataset)# Inspect the dataset.
print("Training Dataset Shapes: " + str(x_train.shape) + ", " + str(y_train.shape))
print("Validation Dataset Shapes: " + str(x_val.shape) + ", " + str(y_val.shape))

演绎展示:

Downloading data from http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy819200096/819200096 ━━━━━━━━━━━━━━━━━━━━ 116s 0us/step
Training Dataset Shapes: (900, 19, 64, 64, 1), (900, 19, 64, 64, 1)
Validation Dataset Shapes: (100, 19, 64, 64, 1), (100, 19, 64, 64, 1)

数据可视化

我们的数据由一系列的帧组成,每个帧都用于预测即将到来的帧。让我们来看一些这些连续帧。

# Construct a figure on which we will visualize the images.
fig, axes = plt.subplots(4, 5, figsize=(10, 8))# Plot each of the sequential images for one random data example.
data_choice = np.random.choice(range(len(train_dataset)), size=1)[0]
for idx, ax in enumerate(axes.flat):ax.imshow(np.squeeze(train_dataset[data_choice][idx]), cmap="gray")ax.set_title(f"Frame {idx + 1}")ax.axis("off")# Print information and display the figure.
print(f"Displaying frames for example {data_choice}.")
plt.show()
Displaying frames for example 95.

模型构建

为了构建一个卷积LSTM模型,我们将使用ConvLSTM2D层,该层将接受形状为(batch_size,num_frames,width,height,channels)的输入,并返回相同形状的预测电影。

# Construct the input layer with no definite frame size.
inp = layers.Input(shape=(None, *x_train.shape[2:]))# We will construct 3 `ConvLSTM2D` layers with batch normalization,
# followed by a `Conv3D` layer for the spatiotemporal outputs.
x = layers.ConvLSTM2D(filters=64,kernel_size=(5, 5),padding="same",return_sequences=True,activation="relu",
)(inp)
x = layers.BatchNormalization()(x)
x = layers.ConvLSTM2D(filters=64,kernel_size=(3, 3),padding="same",return_sequences=True,activation="relu",
)(x)
x = layers.BatchNormalization()(x)
x = layers.ConvLSTM2D(filters=64,kernel_size=(1, 1),padding="same",return_sequences=True,activation="relu",
)(x)
x = layers.Conv3D(filters=1, kernel_size=(3, 3, 3), activation="sigmoid", padding="same"
)(x)# Next, we will build the complete model and compile it.
model = keras.models.Model(inp, x)
model.compile(loss=keras.losses.binary_crossentropy,optimizer=keras.optimizers.Adam(),
)

模型训练


有了模型和数据,我们就可以训练模型了。

# Define some callbacks to improve training.
early_stopping = keras.callbacks.EarlyStopping(monitor="val_loss", patience=10)
reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor="val_loss", patience=5)# Define modifiable training hyperparameters.
epochs = 20
batch_size = 5# Fit the model to the training data.
model.fit(x_train,y_train,batch_size=batch_size,epochs=epochs,validation_data=(x_val, y_val),callbacks=[early_stopping, reduce_lr],
)

演绎展示:

Epoch 1/20180/180 ━━━━━━━━━━━━━━━━━━━━ 50s 226ms/step - loss: 0.1510 - val_loss: 0.2966 - learning_rate: 0.0010
Epoch 2/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0287 - val_loss: 0.1766 - learning_rate: 0.0010
Epoch 3/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0269 - val_loss: 0.0661 - learning_rate: 0.0010
Epoch 4/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0264 - val_loss: 0.0279 - learning_rate: 0.0010
Epoch 5/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0258 - val_loss: 0.0254 - learning_rate: 0.0010
Epoch 6/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0256 - val_loss: 0.0253 - learning_rate: 0.0010
Epoch 7/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0251 - val_loss: 0.0248 - learning_rate: 0.0010
Epoch 8/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0251 - val_loss: 0.0251 - learning_rate: 0.0010
Epoch 9/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0247 - val_loss: 0.0243 - learning_rate: 0.0010
Epoch 10/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0246 - val_loss: 0.0246 - learning_rate: 0.0010
Epoch 11/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0245 - val_loss: 0.0247 - learning_rate: 0.0010
Epoch 12/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0241 - val_loss: 0.0243 - learning_rate: 0.0010
Epoch 13/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0244 - val_loss: 0.0245 - learning_rate: 0.0010
Epoch 14/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0241 - val_loss: 0.0241 - learning_rate: 0.0010
Epoch 15/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0243 - val_loss: 0.0241 - learning_rate: 0.0010
Epoch 16/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0242 - val_loss: 0.0242 - learning_rate: 0.0010
Epoch 17/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0240 - val_loss: 0.0240 - learning_rate: 0.0010
Epoch 18/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0240 - val_loss: 0.0243 - learning_rate: 0.0010
Epoch 19/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0240 - val_loss: 0.0244 - learning_rate: 0.0010
Epoch 20/20180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0237 - val_loss: 0.0238 - learning_rate: 1.0000e-04<keras.src.callbacks.history.History at 0x7ff294f9c340>

帧预测可视化


在构建并训练好模型后,我们可以根据新视频生成一些帧预测示例。

我们将从验证集中随机挑选一个示例,然后从中选择前十个帧。在此基础上,我们可以让模型预测 10 个新帧,并将其与地面实况帧预测进行比较。

# Select a random example from the validation dataset.
example = val_dataset[np.random.choice(range(len(val_dataset)), size=1)[0]]# Pick the first/last ten frames from the example.
frames = example[:10, ...]
original_frames = example[10:, ...]# Predict a new set of 10 frames.
for _ in range(10):# Extract the model's prediction and post-process it.new_prediction = model.predict(np.expand_dims(frames, axis=0))new_prediction = np.squeeze(new_prediction, axis=0)predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)# Extend the set of prediction frames.frames = np.concatenate((frames, predicted_frame), axis=0)# Construct a figure for the original and new frames.
fig, axes = plt.subplots(2, 10, figsize=(20, 4))# Plot the original frames.
for idx, ax in enumerate(axes[0]):ax.imshow(np.squeeze(original_frames[idx]), cmap="gray")ax.set_title(f"Frame {idx + 11}")ax.axis("off")# Plot the new frames.
new_frames = frames[10:, ...]
for idx, ax in enumerate(axes[1]):ax.imshow(np.squeeze(new_frames[idx]), cmap="gray")ax.set_title(f"Frame {idx + 11}")ax.axis("off")# Display the figure.
plt.show()
 1/1 ━━━━━━━━━━━━━━━━━━━━ 2s 2s/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 800ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 805ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 790ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 821ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 824ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 928ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 813ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 810ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 814ms/step

预测视频


最后,我们将从验证集中挑选几个例子,用它们制作一些 GIF,看看模型预测的视频。

你可以使用 Hugging Face Hub 上托管的训练有素的模型,也可以在 Hugging Face Spaces 上尝试演示。

# Select a few random examples from the dataset.
examples = val_dataset[np.random.choice(range(len(val_dataset)), size=5)]# Iterate over the examples and predict the frames.
predicted_videos = []
for example in examples:# Pick the first/last ten frames from the example.frames = example[:10, ...]original_frames = example[10:, ...]new_predictions = np.zeros(shape=(10, *frames[0].shape))# Predict a new set of 10 frames.for i in range(10):# Extract the model's prediction and post-process it.frames = example[: 10 + i + 1, ...]new_prediction = model.predict(np.expand_dims(frames, axis=0))new_prediction = np.squeeze(new_prediction, axis=0)predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)# Extend the set of prediction frames.new_predictions[i] = predicted_frame# Create and save GIFs for each of the ground truth/prediction images.for frame_set in [original_frames, new_predictions]:# Construct a GIF from the selected video frames.current_frames = np.squeeze(frame_set)current_frames = current_frames[..., np.newaxis] * np.ones(3)current_frames = (current_frames * 255).astype(np.uint8)current_frames = list(current_frames)# Construct a GIF from the frames.with io.BytesIO() as gif:imageio.mimsave(gif, current_frames, "GIF", duration=200)predicted_videos.append(gif.getvalue())# Display the videos.
print(" Truth\tPrediction")
for i in range(0, len(predicted_videos), 2):# Construct and display an `HBox` with the ground truth and prediction.box = HBox([widgets.Image(value=predicted_videos[i]),widgets.Image(value=predicted_videos[i + 1]),])display(box)
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 790ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 10ms/stepTruth  PredictionHBox(children=(Image(value=b'GIF89a@\x00@\x00\x87\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xf8\…HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfd\xfd\xfd\xfc\xfc\xfc\xfb\xfb\xfb\xf4\…HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xfb\…HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xfb\…HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfd\xfd\xfd\xfc\xfc\xfc\xf9\xf9\xf9\xf7\…

这篇关于政安晨:【Keras机器学习示例演绎】(二十九)—— 利用卷积 LSTM 进行下一帧视频预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956496

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot请求参数传递与接收示例详解

《SpringBoot请求参数传递与接收示例详解》本文给大家介绍SpringBoot请求参数传递与接收示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录I. 基础参数传递i.查询参数(Query Parameters)ii.路径参数(Path Va

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队