数据分析:基于DESeq2的转录组功能富集分析

2024-05-03 08:20

本文主要是介绍数据分析:基于DESeq2的转录组功能富集分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

DESeq2常用于识别差异基因,它主要使用了标准化因子标准化数据,再根据广义线性模型判别组间差异(组间残差是否显著判断)。在获取差异基因结果后,我们可以进行下一步的富集分析,常用方法有基于在线网站DAVID以及脚本处理的两类,本文介绍基于fgsea的方法计算富集分析得分。

DESeq2差异分析

了解DESeq2如何标准化数据和识别差异基因。下面给出简要代码

library(DESeq2)
library(airway)
data("airway")
ddsSE <- DESeqDataSet(airway, design = ~ cell + dex)
ddsSE <- DESeq(ddsSE)
res <- results(ddsSE, tidy = TRUE) %>% na.omit() %>% as_tibble()head(res)
# A tibble: 6 x 7row             baseMean log2FoldChange  lfcSE   stat     pvalue      padj<chr>              <dbl>          <dbl>  <dbl>  <dbl>      <dbl>     <dbl>
1 ENSG00000000003    709.          0.381  0.101   3.79  0.000152   0.00128  
2 ENSG00000000419    520.         -0.207  0.112  -1.84  0.0653     0.197    
3 ENSG00000000457    237.         -0.0379 0.143  -0.264 0.792      0.911    
4 ENSG00000000460     57.9         0.0882 0.287   0.307 0.759      0.895    
5 ENSG00000000971   5817.         -0.426  0.0883 -4.83  0.00000138 0.0000182
6 ENSG00000001036   1282.          0.241  0.0887  2.72  0.00658    0.0328 

转换geneID

我们使用的MSigDB数据库的pathway 基因ID只有entrez和HGNC symbol两类,如果是ensemble id,需要转换。

library(org.Hs.eg.db)
library(tidyverse)
ens2symbol <- AnnotationDbi::select(org.Hs.eg.db,key=res$row, columns="SYMBOL",keytype="ENSEMBL")
ens2symbol <- as_tibble(ens2symbol)
head(ens2symbol)
# A tibble: 6 x 2ENSEMBL         SYMBOL  <chr>           <chr>   
1 ENSG00000000003 TSPAN6  
2 ENSG00000000419 DPM1    
3 ENSG00000000457 SCYL3   
4 ENSG00000000460 C1orf112
5 ENSG00000000971 CFH     
6 ENSG00000001036 FUCA2 
  • 合并数据;过滤NA值;去重;重复基因求stat(stat数据作为排序指标用于后续富集分析)
res2 <- inner_join(res, ens2symbol, by=c("row"="ENSEMBL")) %>% dplyr::select(SYMBOL, stat) %>% na.omit() %>% distinct() %>% group_by(SYMBOL) %>% summarize(stat=mean(stat))
head(res2 )
# A tibble: 6 x 2SYMBOL       stat<chr>       <dbl>
1 A1BG      0.680  
2 A1BG-AS1 -1.79   
3 A2M      -1.26   
4 A2M-AS1   0.875  
5 A4GALT   -4.14   
6 A4GNT     0.00777

构建fgsea输入数据

  • 基因排序值转换
library(fgsea)ranks <- deframe(res2)
head(ranks, 20)
        A1BG     A1BG-AS1          A2M      A2M-AS1       A4GALT        A4GNT         AAAS         AACS 0.679946437 -1.793291412 -1.259539478  0.875346116 -4.144839902  0.007772497  0.163986128  1.416071728 AADACL4        AADAT        AAGAB         AAK1        AAMDC         AAMP         AAR2        AARS1 
-1.876311694  3.079128034  1.554279946  1.141522348 -2.147527241 -3.170612332 -2.364380163  4.495474603 AARS2       AARSD1        AASDH     AASDHPPT 5.057470292  0.654208006  0.665531695 -0.353496148 
  • pathways的基因集合,上MSigDB下载基因集。演示使用KEGG基因集
pathways.hallmark <- gmtPathways("../../Result/GeneID/msigdb.v7.1.symbols_KEGG.gmt")
pathways.hallmark %>% head() %>% lapply(head)
$KEGG_GLYCOLYSIS_GLUCONEOGENESIS
[1] "ACSS2" "GCK"   "PGK2"  "PGK1"  "PDHB"  "PDHA1"$KEGG_CITRATE_CYCLE_TCA_CYCLE
[1] "IDH3B" "DLST"  "PCK2"  "CS"    "PDHB"  "PCK1" $KEGG_PENTOSE_PHOSPHATE_PATHWAY
[1] "RPE"   "RPIA"  "PGM2"  "PGLS"  "PRPS2" "FBP2" $KEGG_PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS
[1] "UGT1A10" "UGT1A8"  "RPE"     "UGT1A7"  "UGT1A6"  "UGT2B28"$KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM
[1] "MPI"  "PMM2" "PMM1" "FBP2" "PFKM" "GMDS"$KEGG_GALACTOSE_METABOLISM
[1] "GCK"     "GALK1"   "GLB1"    "GALE"    "B4GALT1" "PGM2"
  • 运行
fgseaRes <- fgsea(pathways=pathways.hallmark, stats=ranks, nperm=1000)
head(fgseaRes[order(pval), ])
  • 从查看KEGG_REGULATION_OF_ACTIN_CYTOSKELETON富集分数分布
plotEnrichment(pathways.hallmark[["KEGG_REGULATION_OF_ACTIN_CYTOSKELETON"]],ranks) + labs(title="KEGG_REGULATION_OF_ACTIN_CYTOSKELETON")

  • 查看上下调通路结果
topPathwaysUp <- fgseaRes[ES > 0][head(order(pval), n=10), pathway]
topPathwaysDown <- fgseaRes[ES < 0][head(order(pval), n=10), pathway]
topPathways <- c(topPathwaysUp, rev(topPathwaysDown))
plotGseaTable(pathways.hallmark[topPathways], ranks, fgseaRes, gseaParam=0.5)

  • 其他展示方式
fgseaResTidy <- fgseaRes %>%as_tibble() %>%arrange(desc(NES))# Show in a nice table:
fgseaResTidy %>% dplyr::select(-leadingEdge, -ES, -nMoreExtreme) %>% arrange(padj) %>% DT::datatable()ggplot(fgseaResTidy, aes(reorder(pathway, NES), NES)) +geom_col(aes(fill = padj<0.0001)) +coord_flip() +labs(x="Pathway", y="Normalized Enrichment Score",title="Hallmark pathways NES from GSEA") + theme_minimal()

查看通路的基因

res_temp <- inner_join(res, ens2symbol, by=c("row"="ENSEMBL"))
pathways.hallmark %>% enframe("pathway", "SYMBOL") %>% unnest(cols = c(SYMBOL)) %>% inner_join(res_temp , by="SYMBOL") %>%head()
# A tibble: 6 x 9pathway                         SYMBOL row             baseMean log2FoldChange lfcSE   stat pvalue   padj<chr>                           <chr>  <chr>              <dbl>          <dbl> <dbl>  <dbl>  <dbl>  <dbl>
1 KEGG_GLYCOLYSIS_GLUCONEOGENESIS ACSS2  ENSG00000131069    669.         -0.269  0.114 -2.35  0.0188 0.0756
2 KEGG_GLYCOLYSIS_GLUCONEOGENESIS GCK    ENSG00000106633     28.8         0.305  0.374  0.815 0.415  0.662 
3 KEGG_GLYCOLYSIS_GLUCONEOGENESIS PGK1   ENSG00000102144   7879.         -0.300  0.353 -0.850 0.395  0.642 
4 KEGG_GLYCOLYSIS_GLUCONEOGENESIS PDHB   ENSG00000168291    648.         -0.257  0.102 -2.52  0.0117 0.0521
5 KEGG_GLYCOLYSIS_GLUCONEOGENESIS PDHA1  ENSG00000131828    651.         -0.0744 0.104 -0.715 0.475  0.710 
6 KEGG_GLYCOLYSIS_GLUCONEOGENESIS PGM2   ENSG00000169299    302.         -0.315  0.136 -2.33  0.0201 0.0797

其他用法

  • miR targets
fgsea(pathways=gmtPathways("msigdb/c3.mir.v6.2.symbols.gmt"), ranks, nperm=1000) %>% as_tibble() %>% arrange(padj)
  • GO annotations
fgsea(pathways=gmtPathways("msigdb/c5.all.v6.2.symbols.gmt"), ranks, nperm=1000) %>% as_tibble() %>% arrange(padj)
  • 非人物种
library(biomaRt)
mart <- useDataset("mmusculus_gene_ensembl", mart=useMart("ensembl"))
bm <- getBM(attributes=c("ensembl_gene_id", "hsapiens_homolog_associated_gene_name"), mart=mart) %>%distinct() %>%as_tibble() %>%na_if("") %>% na.omit()
bm

参考

  1. Fast Gene Set Enrichment Analysis

  2. DESeq results to pathways in 60 Seconds with the fgsea package

这篇关于数据分析:基于DESeq2的转录组功能富集分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956275

相关文章

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

SpringKafka消息发布之KafkaTemplate与事务支持功能

《SpringKafka消息发布之KafkaTemplate与事务支持功能》通过本文介绍的基本用法、序列化选项、事务支持、错误处理和性能优化技术,开发者可以构建高效可靠的Kafka消息发布系统,事务支... 目录引言一、KafkaTemplate基础二、消息序列化三、事务支持机制四、错误处理与重试五、性能优

SpringIntegration消息路由之Router的条件路由与过滤功能

《SpringIntegration消息路由之Router的条件路由与过滤功能》本文详细介绍了Router的基础概念、条件路由实现、基于消息头的路由、动态路由与路由表、消息过滤与选择性路由以及错误处理... 目录引言一、Router基础概念二、条件路由实现三、基于消息头的路由四、动态路由与路由表五、消息过滤

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu