数据分析--客户价值分析RFM(分箱法/标准化)

2024-05-03 06:12

本文主要是介绍数据分析--客户价值分析RFM(分箱法/标准化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原数据

原数据如果有异常或者缺失等情况,要先对数据进行处理 ,再进行下面的操作,要不然会影响结果的正确性

一、根据RFM计算客户价值并对客户进行细分 

 1. 数据预处理

1.1 创建视图存储 R、F、M的最大最小值

创建视图存储R 、F、M 的最大最小值,为指标的离散提供数据
create view RFM_maxmin24(maxR,minR,maxF,minF,maxM,minM)
as
SELECT MAX(Recency) , MIN(Recency), MAX(Frequency), MIN(Frequency), MAX(Monetary), MIN(Monetary) 
FROM customers1997 

视图

1.2 创建视图计算对RFM进行离散化

注意Recency 是越小越好指标,公式同 F M 有所不同

计算RFM的各项分值:

★ R ,距离当前日期越近,得分越高,最该高5分,最低1分

★ F ,交易频率越高,得分越高,最该高5分,最低1分

★ M ,交易金额越高,得分越高,最该高5分,最低1分

create view Customer_RFM
as
SELECT customer_id, Recency, Frequency, Monetary,CASE WHEN (maxR - Recency) <= (maxR - minR)/ 5 THEN 1WHEN (maxR - Recency) <= 2 * (maxR - minR)/ 5 THEN 2 WHEN (maxR - Recency) <= 3 * (maxR - minR)/ 5 THEN 3 WHEN (maxR - Recency) <= 4 * (maxR - minR)/ 5 THEN 4WHEN (maxR - Recency) <= 5 * (maxR - minR) / 5 THEN 5 ELSE NULL END AS R, CASE WHEN (maxF - Frequency) <= (maxF - minF)/ 5 THEN 5 WHEN (maxF - Frequency) <= 2 * (maxF - minF) / 5 THEN 4 WHEN (maxF - Frequency) <= 3 * (maxF - minF) / 5 THEN 3 WHEN (maxF - Frequency) <= 4 * (maxF - minF) / 5 THEN 2WHEN (maxF - Frequency) <= 5 * (maxF - minF) / 5 THEN 1ELSE NULL END AS F, CASE WHEN (maxM - Monetary) <= (maxM - minM) / 5 THEN 5 WHEN (maxM - Monetary) <= 2 * (maxM - minM)/ 5 THEN 4 WHEN (maxM - Monetary) <= 3 * (maxM - minM)/ 5 THEN 3 WHEN (maxM - Monetary) <= 4 * (maxM - minM)/ 5 THEN 2 WHEN (maxM - Monetary) <= 5 * (maxM - minM) / 5 THEN 1ELSE NULL END AS M
FROM customers1997 CROSS JOIN rfm_maxmin24

结果:

1.3 建立客户评分表(客户行为变量表)

CREATE TABLE Customer_Value AS
SELECT customer_id, Recency, Frequency,Monetary, R, F, M, R * 5 + F * 3 + M * 2 as value
FROM customer_rfm

 

2. 细分客户价值

df_rfm = pd.read_csv("Customer_Value.csv") #相对路径读取数据
# 客户细分
# 最佳客户(最有价值),常购客户,⼤额消费者,不确定客户(最不值钱)
# Top,High,Medium,Low
df_rfm['Segment'] = pd.cut(df_rfm['value'], 4, labels=['Low', 'Medium', 'High', 'Top'])
df_rfm

3. 创建气泡图,查看分布情况 

# 创建⽓泡图
print("创建⽓泡图")
# 为不同的 Segment 分配颜⾊
color_map = {'Low': 'blue', 'Medium': 'green', 'High': 'orange', 'Top': 'red'}
colors = df_rfm['Segment'].map(color_map)
# 创建⽓泡图
plt.figure(figsize=(10, 6))
bubble_size = df_rfm['Recency'] * 5 # 调整⽓泡⼤⼩,以便更好的可视化
plt.scatter(df_rfm['Frequency'], df_rfm['Monetary'], s=bubble_size, c=colors, alpha=0.5)
plt.title('Customer Segmentation Bubble Chart')
plt.xlabel('Frequency (F)')
plt.ylabel('Monetary (M)')
plt.grid(True)
# 计算 Frequency 和 Monetary 的平均值
avg_frequency = df_rfm['Frequency'].mean()
avg_monetary = df_rfm['Monetary'].mean()
# 添加平均值参考线
plt.axvline(x=avg_frequency, color='black', linestyle='--', linewidth=1.5, label=f'Avg Frequency: {avg_frequency:.2f}')
plt.axhline(y=avg_monetary, color='black', linestyle='--', linewidth=1.5, label=f'Avg Monetary: {avg_monetary:.2f}')
# 创建图例
for segment in color_map:plt.scatter([], [], color=color_map[segment], label=segment, alpha=0.5, s=100)
plt.legend(title='Segment', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()

4. 分析 

只分析了 top,其他方法一样 

print("top用户分析")
top_customers = df_rfm[df_rfm['Segment'] == 'Top']
# 设置⻛格
sns.set(style="whitegrid")
# 创建可视化
plt.figure(figsize=(15, 5))
# Recency分布
plt.subplot(1, 3, 1)
sns.barplot(x='customer_id', y='Recency', data=top_customers, palette='cool')
plt.title('Top Customers Recency')
# Frequency分布
plt.subplot(1, 3, 2)
sns.barplot(x='customer_id', y='Frequency', data=top_customers, palette='cool')
plt.title('Top Customers Frequency')
# Monetary分布
plt.subplot(1, 3, 3)
sns.barplot(x='customer_id', y='Monetary', data=top_customers, palette='cool')
plt.title('Top Customers Monetary')
plt.tight_layout()
plt.show()

# 计算平均RFM值
avg_recency = top_customers['Recency'].mean()
avg_frequency = top_customers['Frequency'].mean()
avg_monetary = top_customers['Monetary'].mean()
# 输出结果
print(f"Top Average Recency: {avg_recency}")
print(f"Top Average Frequency: {avg_frequency}")
print(f"Top Average Monetary: {avg_monetary}")
print("top人数: ", len(top_customers))

 

5. 轮廓系数

df_rfm0 = df_rfm[['Recency','Frequency', 'Monetary']]
print("轮廓系数:",metrics.silhouette_score(df_rfm0, df_rfm['Segment'],metric='euclidean'))

 

 二、5 分法分箱(等宽/等频)对客户进行细分

分析和建模

 1.“客户行为变量”表 

a. 等宽 

print('数据——“客户⾏为变量”表')
df #数据——“客户⾏为变量”表
# 对RFM值进⾏标准化或打分
df['R_Score'] = pd.cut(df['Recency'], 5, labels=[5, 4, 3, 2, 1])
# print(df.groupby('R_Score').R_Score.count())  # 统计各分区人数
df['F_Score'] = pd.cut(df['Frequency'], 5, labels=[1, 2, 3, 4, 5])
df['M_Score'] = pd.cut(df['Monetary'], 5, labels=[1, 2, 3, 4, 5])# 计算RFM总分
df['RFM_Score'] = df['R_Score'].astype(int) * 5 + df['F_Score'].astype(int) * 3+ df['M_Score'].astype(int)*2

b. 等频

划分的函数qcut()和等宽的cut()不一样,其他的操作都一样 

print("等频")
# 利⽤等频算法将Recency划分为5个区间
df['r_discretized_2'] = pd.qcut(r, 5, labels=range(5))
print(df.groupby('r_discretized_2').r_discretized_2.count())

2. 细分客户 

# 客户细分
# 最佳客户(最有价值),常购客户,⼤额消费者,不确定客户(最不值钱)
# Top,High,Medium,Low
df['Segment'] = pd.cut(df['RFM_Score'], 4, labels=['Low', 'Medium', 'High', 'Top'])
df

3. 气泡图

# 创建⽓泡图
print("创建⽓泡图")
# 为不同的 Segment 分配颜⾊
color_map = {'Low': 'blue', 'Medium': 'green', 'High': 'orange', 'Top': 'red'}
colors = df['Segment'].map(color_map)
# 创建⽓泡图
plt.figure(figsize=(10, 6))
bubble_size = df['Recency'] * 5 # 调整⽓泡⼤⼩,以便更好的可视化
plt.scatter(df['Frequency'], df['Monetary'], s=bubble_size, c=colors, alpha=0.5)
plt.title('Customer Segmentation Bubble Chart')
plt.xlabel('Frequency (F)')
plt.ylabel('Monetary (M)')
plt.grid(True)
# 计算 Frequency 和 Monetary 的平均值
avg_frequency = df['Frequency'].mean()
avg_monetary = df['Monetary'].mean()
# 添加平均值参考线
plt.axvline(x=avg_frequency, color='black', linestyle='--', linewidth=1.5, label=f'Avg Frequency: {avg_frequency:.2f}')
plt.axhline(y=avg_monetary, color='black', linestyle='--', linewidth=1.5, label=f'Avg Monetary: {avg_monetary:.2f}')
# 创建图例
for segment in color_map:plt.scatter([], [], color=color_map[segment], label=segment, alpha=0.5, s=100)
plt.legend(title='Segment', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()

4. 分析

print("top用户分析")
top_customers = df[df['Segment'] == 'Top']
# 设置⻛格
sns.set(style="whitegrid")
# 创建可视化
plt.figure(figsize=(15, 5))
# Recency分布
plt.subplot(1, 3, 1)
sns.barplot(x='customer_id', y='Recency', data=top_customers, palette='cool')
plt.title('Top Customers Recency')
# Frequency分布
plt.subplot(1, 3, 2)
sns.barplot(x='customer_id', y='Frequency', data=top_customers, palette='cool')
plt.title('Top Customers Frequency')
# Monetary分布
plt.subplot(1, 3, 3)
sns.barplot(x='customer_id', y='Monetary', data=top_customers, palette='cool')
plt.title('Top Customers Monetary')
plt.tight_layout()
plt.show()

# 计算平均RFM值
avg_recency = top_customers['Recency'].mean()
avg_frequency = top_customers['Frequency'].mean()
avg_monetary = top_customers['Monetary'].mean()
# 输出结果
print(f"Top Average Recency: {avg_recency}")
print(f"Top Average Frequency: {avg_frequency}")
print(f"Top Average Monetary: {avg_monetary}")

print("“Top”客户群体不仅活跃(低Recency值)⽽且⾮常忠诚(⾼Frequency值)⾼消费能⼒")
# ⼈数统计分析
education_levels = top_customers['education'].value_counts()
gender_distribution = top_customers['gender'].value_counts()
print(education_levels)
print("top人数: ")
top_counts =  len(top_customers)
print(top_counts)

 

5. 轮廓系数

from sklearn import metrics
df_rfm = df[['Recency','Frequency', 'Monetary']]
print("轮廓系数:",metrics.silhouette_score(df_rfm, df['Segment'],metric='euclidean'))

 

 三、RFM数据标准化归一化(0-1)

import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
from sklearn import metrics
# pip install scikit-learn
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.impute import SimpleImputer
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline

### 设置⼯作⽬录
os.chdir('/Users/mac/Documents/**/数据分析/作业/探究客户价值') #数据所在⽬录
### 数据抽取,读⼊数据
df = pd.read_csv("customers1997.csv") #相对路径读取数据
# print(df.info())
# 描述性统计
print(df.describe())

常用的规范化/标准化:

数据规范化是调整数据尺度的⼀种⽅法,以便在不同的数据集之间进⾏公平⽐较。

  • 最⼤-最⼩规范化:将数据缩放到01之间,是⼀种常⽤的归⼀化⽅法,有助于处理那些标准化假设正态分布的⽅法不适⽤的情况。
  • Z分数规范化:通过数据的标准偏差来度量数据点的标准分数,有助于数据的异常值处理和去除偏差。
  • ⼩数定标规范化:通过移动数据的⼩数点位置(取决于数据的最⼤绝对值)来转换数据,使得数据更加稳定和标准化。
df_fm = df[['Frequency', 'Monetary']]
# 最⼤-最⼩规范化
scaler_minmax = MinMaxScaler()
data_minmax = scaler_minmax.fit_transform(df_fm)
# Z分数规范化
scaler_standard = StandardScaler()
data_standard = scaler_standard.fit_transform(df_fm)
# ⼩数定标规范化
df_fm = df[['Frequency', 'Monetary']]
max_vals = df_fm.abs().max()
scaling_factor = np.power(10, np.ceil(np.log10(max_vals)))
df_fm_scaled = df_fm / scaling_factor

wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

  1. 数据归一化

print('将数据归一化(0-1)')
scaler_minmax = MinMaxScaler()
df_rfm = df[['Recency','Frequency', 'Monetary']]

df_rfm[['Recency','Frequency', 'Monetary']] = scaler_minmax.fit_transform(df_rfm)
print("打分")
df_rfm['R_S'] = pd.cut(df_rfm['Recency'], 5, labels=[5, 4, 3, 2, 1])
df_rfm['F_S'] = pd.cut(df_rfm['Frequency'], 5, labels=[1, 2, 3, 4, 5])
df_rfm['M_S'] = pd.cut(df_rfm['Monetary'], 5, labels=[1, 2, 3, 4, 5])
df_rfm

效果: 

权重根据需要填写 

# 计算RFM总分
df_rfm['RFM_S'] = df_rfm['R_S'].astype(int) * 5 + df_rfm['F_S'].astype(int) * 3+ df_rfm['M_S'].astype(int)*2

2. 客户细分

# 客户细分
# 最佳客户(最有价值),常购客户,⼤额消费者,不确定客户(最不值钱)
# Top,High,Medium,Low
df_rfm['Segment'] = pd.cut(df_rfm['RFM_S'], 4, labels=['Low', 'Medium', 'High', 'Top'])
df_rfm

3. 气泡图

# 创建⽓泡图
print("创建⽓泡图")
# 为不同的 Segment 分配颜⾊
color_map = {'Low': 'blue', 'Medium': 'green', 'High': 'orange', 'Top': 'red'}
colors = df_rfm['Segment'].map(color_map)
# 创建⽓泡图
plt.figure(figsize=(10, 6))
bubble_size = df_rfm['Recency'] * 20 # 调整⽓泡⼤⼩,以便更好的可视化
plt.scatter(df_rfm['Frequency'], df_rfm['Monetary'], s=bubble_size, c=colors, alpha=0.5)
plt.title('Customer Segmentation Bubble Chart')
plt.xlabel('Frequency (F)')
plt.ylabel('Monetary (M)')
plt.grid(True)
# 计算 Frequency 和 Monetary 的平均值
avg_frequency = df_rfm['Frequency'].mean()
avg_monetary = df_rfm['Monetary'].mean()
# 添加平均值参考线
plt.axvline(x=avg_frequency, color='black', linestyle='--', linewidth=1.5, label=f'Avg Frequency: {avg_frequency:.2f}')
plt.axhline(y=avg_monetary, color='black', linestyle='--', linewidth=1.5, label=f'Avg Monetary: {avg_monetary:.2f}')
# 创建图例
for segment in color_map:plt.scatter([], [], color=color_map[segment], label=segment, alpha=0.5, s=100)
plt.legend(title='Segment', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()

4.分析

print("top用户分析")
top_customers = df_rfm[df_rfm['Segment'] == 'Top']

# 计算平均RFM值
avg_recency = top_customers['Recency'].mean()
avg_frequency = top_customers['Frequency'].mean()
avg_monetary = top_customers['Monetary'].mean()
# 输出结果
print(f"Top Average Recency: {avg_recency}")
print(f"Top Average Frequency: {avg_frequency}")
print(f"Top Average Monetary: {avg_monetary}")
print("top人数: ", len(top_customers))

 

print("“Top”客户群体不仅活跃(低Recency值)⽽且⾮常忠诚(⾼Frequency值)⾼消费能⼒")

5. 轮廓系数

df_rfm0 = df_rfm[['Recency','Frequency', 'Monetary']]
print("轮廓系数:",metrics.silhouette_score(df_rfm0, df_rfm['Segment'],metric='euclidean'))

这篇关于数据分析--客户价值分析RFM(分箱法/标准化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956003

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等