PotatoPie 4.0 实验教程(32) —— FPGA实现摄像头图像浮雕效果

2024-05-02 20:04

本文主要是介绍PotatoPie 4.0 实验教程(32) —— FPGA实现摄像头图像浮雕效果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是浮雕效果?

浮雕效果是一种图像处理技术,用于将图像转换为看起来像浮雕一样的效果,给人一种凸起或凹陷的立体感觉,下面第二张图就是图像处理实现浮雕效果。

不过这个图是用Adobe公司的PS人工P图实现的,效果比较好,算法比我们在本教程讲述的要复杂很多,当然算法也没有公开。

图像的浮雕效果怎么实现?

图像的浮雕效果通常是通过以下步骤实现的:

  1. 转换为灰度图像:首先,将彩色图像转换为灰度图像。因为浮雕效果更适用于单通道的灰度图像,而且计算简单。

  2. 计算浮雕效果:对于每个像素,计算其与相邻像素的亮度差异。这个差异值越大,就越可能是立体感觉的边界。

  3. 映射到目标图像:根据计算的差异值,将图像中的每个像素替换为其灰度值加上一个固定的偏移量。通常,亮度差越大,偏移量就越大,从而产生浮雕效果。

  4. 调整浮雕强度:可以通过调整偏移量的大小来控制浮雕的强度。较大的偏移量将产生更加明显的浮雕效果,而较小的偏移量则会产生更加柔和的效果。

  5. 输出结果:最终得到的图像就是具有浮雕效果的图像,可以保存或者显示出来。

浮雕效果的实现方法有多种,但通常包括计算亮度差异、映射到目标图像和调整强度等步骤。

浮雕效果旨在突出图像中的变化部分,减弱相似部分,从而产生一种立体感。一般的处理流程如下:

  1. 差值计算:对于每个像素点,计算其左上角像素与右下角像素的亮度差值,然后加上一个固定的偏移值(通常为128)。这个过程突出了图像中的边缘和变化部分。

  2. 边界处理:对计算得到的差值进行边界处理,确保其范围在0到255之间。大于255的值被截断为255,小于0的值被截断为0。

  3. 像素替换:用处理后的差值替换原始图像中对应位置的像素值,产生浮雕效果。

python实现图像的浮点效果处理源码

PotatoPie 4.0 实验教程(32) —— FPGA实现摄像头图像浮雕效果-Anlogic-安路论坛-FPGA CPLD-ChipDebug

这段代码实现了将一张彩色图像转换为灰度图像,并对灰度图像进行浮雕效果的处理。具体功能如下:

  1. 读取名为”Lena.jpg”的彩色图像文件。
  2. 将彩色图像转换为灰度图像,以便后续处理。
  3. 计算浮雕效果图像,通过对每个像素点的领域像素进行差值计算,并添加一个偏置值(128),然后将结果限制在[0, 255]的范围内,得到浮雕效果图像。
  4. 显示原始灰度图像、浮雕效果图像以及另一个浮雕效果图像(在计算时采用不同的方法)。

函数功能说明:

  • cv2.imread(imagePath): 读取图像文件,返回图像的Numpy数组表示。
  • cv2.cvtColor(imageIn, cv2.COLOR_BGR2GRAY): 将彩色图像转换为灰度图像。
  • plt.imshow(image, cmap='gray'): 将图像显示在matplotlib窗口中,使用灰度色彩映射。
  • plt.title('title', fontproperties=font): 设置图像的标题,使用指定的字体。

上面这段代码中我们运用了两种方式计算浮雕效果:

  • 第一种:imageGray(i-1, j-1) - imageGray(i+1, j+1) + 128; 即像素点的左上角像素与右下角的像素做差值然后加上 128 
  • 第二种:imageGray(i, j+1) - imageGray(i, j) + 128; 采用一行像素中前后两个像素做差值然后加上128

下面是两种浮雕效果的示意图,可以看到第一种的效果要比第二种的效果好。

MATLAB实现图像的浮点效果处理源码

PotatoPie 4.0 实验教程(32) —— FPGA实现摄像头图像浮雕效果-Anlogic-安路论坛-FPGA CPLD-ChipDebug

这段 MATLAB 代码实现了对输入的彩色图像进行浮雕效果处理,并显示处理前后的图像。以下是代码的详细功能介绍:

  1. 清除工作空间:

    • 使用 clearclear all 和 clc 命令清除 MATLAB 工作空间中的所有变量、函数以及命令窗口的内容。
  2. 获取当前脚本所在目录:

    • 使用 mfilename 和 fileparts 函数获取当前 MATLAB 脚本所在的目录。
  3. 读取图像文件:

    • 使用 imread 函数读取名为 “Lena.jpg” 的图像文件,该文件位于脚本所在目录。
  4. 将图像转换为灰度图像:

    • 使用 rgb2gray 函数将彩色图像转换为灰度图像。
  5. 初始化浮雕效果图像矩阵:

    • 使用 zeros 函数初始化一个与灰度图像大小相同的全零矩阵,用于存储浮雕效果图像。
  6. 计算浮雕效果:

    • 使用嵌套的 for 循环遍历灰度图像的每个像素点。
    • 对于每个像素点,计算其浮雕像素值,即该像素与其左上角像素的灰度值差加上 128。
    • 通过限制像素值范围确保浮雕像素值在 0 到 255 之间。
    • 将计算得到的浮雕像素值赋给对应位置的浮雕效果图像矩阵。
  7. 显示图像:

    • 使用 subplot 和 imshow 函数在 MATLAB 中创建一个包含三个子图的图像窗口。
    • 第一个子图显示原始的灰度图像。
    • 第二个子图显示经过浮雕效果处理后的图像。
    • 第三个子图显示另一个经过浮雕效果处理后的图像。

通过这段代码,可以清楚地展示了原始图像和经过浮雕效果处理后的图像,帮助用户理解浮雕效果处理的效果和实现过程。

上面这段代码中我们运用了两种方式计算浮雕效果:

  • 第一种:imageGray(i-1, j-1) - imageGray(i+1, j+1) + 128; 即像素点的左上角像素与右下角的像素做差值然后加上 128 
  • 第二种:imageGray(i, j+1) - imageGray(i, j) + 128; 采用一行像素中前后两个像素做差值然后加上128

下面是两种浮雕效果的示意图,可以看到第一种的效果要比第二种的效果好。

FPGA工程分析

层次图

demo18相比,只是多了一个img_emboss的模块,也就是下面这一段代码,在从SDRAM读出来之后,经它处理后再输出hdmi_tx模块。

img_emboss u_img_emboss
(.i_clk(clk_pixel),.i_rst_n(sys_rst_n),.i_hs(VGA_HS),     .i_vs(VGA_VS),     .i_de  (VGA_DE),       .i_r(VGA_RGB[23:16]),.i_g(VGA_RGB[15:8] ),.i_b(VGA_RGB[7:0]  ),    .value(65),  .o_hs(emboss_hs),.o_vs(emboss_vs),.o_de(emboss_de),   .o_gray(emboss_data)
);

img_emboss模块源代码分析

前面讲过有两种实现浮雕效果的算法,为了简化运算和让教程更易懂,我们这个教程中先采用第二种算法。在后面会再开一篇讲解如何实现浮雕效果的第一种算法。

img_emboss核心代码总共有三步:

1、转灰度图,前面的课程中介绍过

r_d0 <= 77 * i_r;

g_d0 <= 150 * i_g;
b_d0 <= 29 * i_b;

2、浮雕计算,这里即为采用第二种方法,gray_d0[15:8]是当前像素的灰度值,gray_reg是前一像素的灰度值

assign emboss = gray_d0[15:8] - gray_reg + value; // 浮雕效果值计算

3.对计算出来的值进行防溢出处理,详见代码最后一段always;

管脚约束

与PotatoPie 4.0 实验教程(18) —— FPGA实现OV5640摄像头采集以SDRAM作为显存进行HDMI输出显示相同,不作赘述。

时序约束

与PotatoPie 4.0 实验教程(18) —— FPGA实现OV5640摄像头采集以SDRAM作为显存进行HDMI输出显示相同,不作赘述。

实验效果

这篇关于PotatoPie 4.0 实验教程(32) —— FPGA实现摄像头图像浮雕效果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/955058

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P