异常检测_线性相关方法

2024-05-02 19:58

本文主要是介绍异常检测_线性相关方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性模型内容

引言

真实数据集中不同维度的数据通常具有高度的相关性,这是因为不同的属性往往是由相同的基础过程以密切相关的方式产生的。在古典统计学中,这被称为——回归建模,一种参数化的相关性分析。   一类相关性分析试图通过其他变量预测单独的属性值,另一类方法用一些潜在变量来代表整个数据。前者的代表是 线性回归,后者一个典型的例子是 主成分分析。本文将会用这两种典型的线性相关分析方法进行异常检测。

需要明确的是,这里有两个重要的假设:

假设一:近似线性相关假设。线性相关假设是使用两种模型进行异常检测的重要理论基础。

假设二:子空间假设。子空间假设认为数据是镶嵌在低维子空间中的,线性方法的目的是找到合适的低维子空间使得异常点(o)在其中区别于正常点(n)。

基于这两点假设,在异常检测的第一阶段,为了确定特定的模型是否适合特定的数据集,对数据进行探索性和可视化分析是非常关键的。

代码演示
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

线性回归

在线性回归中,我们假设不同维度的变量具有一定的相关性,并可以通过一个相关系数矩阵进行衡量。因此对于特定的观测值,可以通过线性方程组来建模。在实际应用中,观测值的数量往往远大于数据的维度,导致线性方程组是一个超定方程,不能直接求解。因此需要通过优化的方法,最小化模型预测值与真实数据点的误差。

线性回归是统计学中一个重要的应用,这个重要的应用往往是指通过一系列自变量去预测一个特殊因变量的值。在这种情况下,异常值是根据其他自变量对因变量的影响来定义的,而自变量之间相互关系中的异常则不那么重要。这里的异常点检测主要用于数据降噪,避免异常点的出现对模型性能的影响,因而这里关注的兴趣点主要是正常值(n)。

而我们通常所说的异常检测中并不会对任何变量给与特殊对待,异常值的定义是基于基础数据点的整体分布,这里我们关注的兴趣点主要是异常值(o)。

广义的回归建模只是一种工具,这种工具既可以用来进行数据降噪也可以进行异常点检测。

基于自变量与因变量的线性回归

最小二乘法

为了简单起见,这里我们一元线性回归为例:

Y = ∑ i = 1 d a i ⋅ X i + a d + 1 Y=\sum_{i=1}^{d} a_{i} \cdot X_{i}+a_{d+1} Y=i=1daiXi+ad+1

变量Y为因变量,也就是我们要预测的值; X 1 . . . X d X_{1}...X_{d} X1...Xd为一系列因变量,也就是输入值。系数 a 1 . . . a d + 1 a_{1}...a_{d+1} a1...ad+1为要学习的参数。假设数据共包含 N N N个样本,第 j j j个样本包含的数据为 x j 1 . . . x j d x_{j1}...x_{jd} xj1...xjd y j y_{j} yj,带入式(1)如下式所示:

y j = ∑ i = 1 d a i ⋅ x j i + a d + 1 + ϵ j y_{j}=\sum_{i=1}^{d} a_{i} \cdot x_{j i}+a_{d+1}+\epsilon_{j} yj=i=1daixji+ad+1+ϵj

这里 ϵ j \epsilon_{j} ϵj为第 j j j个样本的误差。以 Y Y Y 代表 N × 1 N \times 1 N×1 的因变量矩阵 ( y 1 . . . y N ) T {(y_{1}...y_{N})}^{T} (y1...yN)T,即样本中的真实值;以 U U U代表 N × ( d + 1 ) N \times (d+1) N×(d

这篇关于异常检测_线性相关方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/955050

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

电脑死机无反应怎么强制重启? 一文读懂方法及注意事项

《电脑死机无反应怎么强制重启?一文读懂方法及注意事项》在日常使用电脑的过程中,我们难免会遇到电脑无法正常启动的情况,本文将详细介绍几种常见的电脑强制开机方法,并探讨在强制开机后应注意的事项,以及如何... 在日常生活和工作中,我们经常会遇到电脑突然无反应的情况,这时候强制重启就成了解决问题的“救命稻草”。那

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关