相关性分析(具体来说,皮尔逊成对相关性)和回归分析(具体来说,双变量最小二乘 (OLS) 回归)具有许多共同的特征: 两者都定期应用于两个连续变量(我们称之为 X 和 Y)。通常向学生介绍这两种图表时使用的是同一类型的图表:散点图。二者从根本上讲都是关于 X 中的偏差(即相对于平均值的单个值)与 Y 中的偏差之间的关系。两者都假设 X 和 Y 之间存在线性关系。两者都可以用于经典的假设检验,每个
这一篇文章和大家聊聊向量。 向量与平面 向量这个概念我们在高中就接触到了,它既指一个点在空间中的坐标,也表示一个有向线段,如果我们加入复数概念的话,它还能表示一个数。在线性代数当中,向量就是指的n个有次序的数 a 1 , a 2 , ⋯ , a n a_1, a_2, \cdots, a_n a1,a2,⋯,an组成的数组。 向量可以写成一行,也可以写成一列。写成一列的称为列向