NASA数据集——NASA 标准二级(L2)暗目标(DT)气溶胶产品每 6 分钟在全球范围内对陆地和海洋上空的气溶胶光学厚度(AOT)产品

本文主要是介绍NASA数据集——NASA 标准二级(L2)暗目标(DT)气溶胶产品每 6 分钟在全球范围内对陆地和海洋上空的气溶胶光学厚度(AOT)产品,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VIIRS/NOAA20 Dark Target Aerosol 6-Min L2 Swath 6 km

简介

NOAA-20(前身为联合极地卫星系统-1(JPSS-1))--可见红外成像辐射计套件(VIIRS)NASA 标准二级(L2)暗目标(DT)气溶胶产品每 6 分钟在全球范围内对陆地和海洋上空的气溶胶光学厚度(AOT)及其特性以及海洋上空的光谱 AOT 及其尺寸参数进行卫星衍生测量。VIIRS 的 DT 气溶胶产品是基于相同的 DT 算法开发的,该算法用于从 Terra 和 Aqua 任务的中型成像分光仪 (MODIS) 仪器中获取产品。目前有两种不同的 DT 算法。一种算法有助于检索海洋上空的气溶胶信息(可见光和较长波段为暗色),另一种算法则有助于检索植被覆盖/暗色土壤覆盖的陆地上空的气溶胶信息(可见光波段为暗色)。这个轨道级产品(简称:AERDT_L2_VIIRS_NOAA20)在天底的分辨率为 6 千米 x 6 千米,由于传感器的扫描几何形状和地球曲率,在远离天底的地方分辨率会逐渐增加。换个角度看,该产品的分辨率可容纳 8 x 8 原始 VIIRS 中等分辨率(M 波段)像素,这些像素的水平像素尺寸大约为 750 米。因此,二级暗目标气溶胶光学厚度数据产品在 6 分钟的采集过程中包含了 64 个(750 米)像素。这套第 2 版产品是首次收集 NOAA-20 VIIRS 来源的第 2 级暗目标气溶胶数据。因此,有必要概述 NOAA-20 VIIRS 与 Suomi National Polar-orbiting Partnership (SNPP) VIIRS 得出的产品之间的差异。Level-2 暗目标气溶胶: NOAA-20 VIIRS v2.0 改进版--NOAA-20 VIIRS v2.0 产品使用了更高分辨率的云掩模,该掩模源自 375 米图象波段红波长,可在减少云污染的情况下进行更近距离的近云检索。这种改进后的掩膜在海洋上空尤为明显,许多高 AOD 值都被向下修正。- NOAA-20 VIIRS v2.0 产品使用 NASA 全球建模和同化办公室(GMAO)的输入作为辅助气象数据源,而不是之前 NOAA 全球数据同化系统(GDAS)的数据源。- NOAA-20 VIIRS v2.0 产品使用更新的 VIIRS Level-1B 反射率,其校准比前一版本有所改进。- NOAA-20 VIIRS v2.0 产品现在报告所有七个波段的陆地平均反射率和标准偏差,而 v1.1 产品仅报告海洋反射率。 L2 netCDF 产品包含以下 37 个科学数据集 (SDS) 图层:

  1. Aerosol_Cldmask_Land_Ocean
  2. Aerosol_Cloud_Fraction_Land
  3. Aerosol_Cloud_Fraction_Ocean
  4. Aerosol_Type_Land
  5. Angstrom_Exponent_1_Ocean
  6. Angstrom_Exponent_2_Ocean
  7. Asymmetry_Factor_Average_Ocean
  8. Average_Cloud_Pixel_Distance_Land_Ocean
  9. Backscattering_Ratio_Average_Ocean
  10. Cloud_Pixel_Distance_Land_Ocean
  11. Corrected_Optical_Depth_Land
  12. Effective_Optical_Depth_Average_Ocean
  13. Effective_Radius_Ocean
  14. Error_Flag_Land_And_Ocean
  15. Fitting_Error_Land
  16. Image_Optical_Depth_Land_And_Ocean
  17. Land_Ocean_Quality_Flag
  18. Land_Sea_Flag
  19. Least_Squares_Error_Ocean
  20. Mass_Concentration_Land
  21. Mass_Concentration_Ocean
  22. Mean_Reflectance_Land
  23. Mean_Reflectance_Ocean
  24. Number_Pixels_Used_Land
  25. Number_Pixels_Used_Ocean
  26. Optical_Depth_By_Models_Ocean
  27. Optical_Depth_Land_And_Ocean
  28. Optical_Depth_Large_Average_Ocean
  29. Optical_Depth_Ratio_Small_Land
  30. Optical_Depth_Ratio_Small_Ocean_0p55micron
  31. Optical_Depth_Small_Average_Ocean
  32. PSML003_Ocean
  33. STD_Reflectance_Land
  34. STD_Reflectance_Ocean
  35. Surface_Reflectance_Land
  36. Topographic_Altitude_Land
  37. Wind_Speed_Ncep_Ocean

数据信息

Shortname:AERDT_L2_VIIRS_NOAA20
Platform:NOAA-20
Instrument:VIIRS
Processing Level:Level-2
File Size (MB):7 - 12 MB
Data Format:netCDF4
Spatial Resolution:6km
Temporal Resolution:6 minute
Spatial Coverage:Global (daytime only)
ArchiveSets:5200
Collection:NPP and JPSS1 VIIRS data 2.0 (ArchiveSet 5200)
Production Frequency:~130 files/day
Data Authors:R.C. Levy, S. Mattoo, V. Sawyer, L.A. Munchak
Dataset Originator/Creator:Dark Target aerosol team, Climate and Radiation Laboratory, NASA Goddard Space Flight Center
PGE Number:NONE
File Naming Convention:

Example: AERDT_L2_VIIRS_NOAA20.A2019218.1818.001.2019291174906.nc
Syntax: ESDT.AYYYYDDD.HHMM.CCC.YYYYDDDHHMMSS.Format

  • ESDT = Earth Science Data Type or Shortname
  • A = Acquisition
  • YYYYDDD = Data acquisition year and Day-of-year
  • HHMM = Acquisition Hour and Minute
  • CCC = Version ID of the data collection
  • YYYYDDDHHMMSS = Processing year, Day-of-year, UTC time (hour, minutes, seconds)
  • Format = File format suffix, which in the above case represents netCDF4
Citation:Please cite the use of this data set in publications using the following references:

Sawyer, V., R.C. Levy, S. Mattoo, G. Cureton, Y. Shi, and L.A. Remer (2020), Continuing the MODIS Dark Target Aerosol Time Series with VIIRS. Remote Sens. 2020, 12, 308; https://doi.org/10.3390/rs12020308

Levy, R.C., L. A. Munchak, S. Mattoo, F. Patadia, L. A. Remer, and R. E. Holz (2015), Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance, Atmos. Meas. Tech., 8, 4083–4110.
Keywords:SNPP VIIRS, L2 Swath, 6-Minute, Dark Target Aerosol Optical Thickness

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="AERDT_L2_VIIRS_NOAA20",cloud_hosted=True,bounding_box=(-180.0, -90.0, 180.0, 90.0),temporal=("2000-01-01", "2024-04-26"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

数据链接

VIIRS/NOAA20 Dark Target Aerosol 6-Min L2 Swath 6 km - LAADS DAAC

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

这篇关于NASA数据集——NASA 标准二级(L2)暗目标(DT)气溶胶产品每 6 分钟在全球范围内对陆地和海洋上空的气溶胶光学厚度(AOT)产品的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/953931

相关文章

乐鑫 Matter 技术体验日|快速落地 Matter 产品,引领智能家居生态新发展

随着 Matter 协议的推广和普及,智能家居行业正迎来新的发展机遇,众多厂商纷纷投身于 Matter 产品的研发与验证。然而,开发者普遍面临技术门槛高、认证流程繁琐、生产管理复杂等诸多挑战。  乐鑫信息科技 (688018.SH) 凭借深厚的研发实力与行业洞察力,推出了全面的 Matter 解决方案,包含基于乐鑫 SoC 的 Matter 硬件平台、基于开源 ESP-Matter SDK 的一

【服务器运维】MySQL数据存储至数据盘

查看磁盘及分区 [root@MySQL tmp]# fdisk -lDisk /dev/sda: 21.5 GB, 21474836480 bytes255 heads, 63 sectors/track, 2610 cylindersUnits = cylinders of 16065 * 512 = 8225280 bytesSector size (logical/physical)

据阿谱尔APO Research调研显示,2023年全球髓内钉市场销售额约为4.7亿美元

根据阿谱尔 (APO Research)的统计及预测,2023年全球髓内钉市场销售额约为4.7亿美元,预计在2024-2030年预测期内将以超过3.82%的CAGR(年复合增长率)增长。 髓内钉市场是指涉及髓内钉制造、分销和销售的行业。髓内钉是一种用于整形外科手术的医疗器械,用于稳定长骨骨折,特别是股骨、胫骨和肱骨。髓内钉通常由不銹钢或钛等材料制成,并插入骨的髓管中,以在愈合过程中提供结构支

亮相WOT全球技术创新大会,揭秘火山引擎边缘容器技术在泛CDN场景的应用与实践

2024年6月21日-22日,51CTO“WOT全球技术创新大会2024”在北京举办。火山引擎边缘计算架构师李志明受邀参与,以“边缘容器技术在泛CDN场景的应用和实践”为主题,与多位行业资深专家,共同探讨泛CDN行业技术架构以及云原生与边缘计算的发展和展望。 火山引擎边缘计算架构师李志明表示:为更好地解决传统泛CDN类业务运行中的问题,火山引擎边缘容器团队参考行业做法,结合实践经验,打造火山

js+css二级导航

效果 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Con

SQL Server中,查询数据库中有多少个表,以及数据库其余类型数据统计查询

sqlserver查询数据库中有多少个表 sql server 数表:select count(1) from sysobjects where xtype='U'数视图:select count(1) from sysobjects where xtype='V'数存储过程select count(1) from sysobjects where xtype='P' SE

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述。以下是从不同角度对气象站的种类和应用范围的介绍: 一、气象站的种类 根据用途和安装环境分类: 农业气象站:专为农业生产服务,监测土壤温度、湿度等参数,为农业生产提供科学依据。交通气象站:用于公路、铁路、机场等交通场所的气象监测,提供实时气象数据以支持交通运营和调度。林业气象站:监测林区风速、湿度、温度等气象要素,为林区保护和

数据时代的数字企业

1.写在前面 讨论数据治理在数字企业中的影响和必要性,并介绍数据治理的核心内容和实践方法。作者强调了数据质量、数据安全、数据隐私和数据合规等方面是数据治理的核心内容,并介绍了具体的实践措施和案例分析。企业需要重视这些方面以实现数字化转型和业务增长。 数字化转型行业小伙伴可以加入我的星球,初衷成为各位数字化转型参考库,星球内容每周更新 个人工作经验资料全部放在这里,包含数据治理、数据要

如何在Java中处理JSON数据?

如何在Java中处理JSON数据? 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨在Java中如何处理JSON数据。JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,在现代应用程序中被广泛使用。Java通过多种库和API提供了处理JSON的能力,我们将深入了解其用法和最佳

C语言入门系列:探秘二级指针与多级指针的奇妙世界

文章目录 一,指针的回忆杀1,指针的概念2,指针的声明和赋值3,指针的使用3.1 直接给指针变量赋值3.2 通过*运算符读写指针指向的内存3.2.1 读3.2.2 写 二,二级指针详解1,定义2,示例说明3,二级指针与一级指针、普通变量的关系3.1,与一级指针的关系3.2,与普通变量的关系,示例说明 4,二级指针的常见用途5,二级指针扩展到多级指针 小结 C语言的学习之旅中,二级