llama_index微调BGE模型

2024-05-02 09:12
文章标签 模型 微调 llama index bge

本文主要是介绍llama_index微调BGE模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

微调模型是为了让模型在特殊领域表现良好,帮助其学习到专业术语等。

本文采用llama_index框架微调BGE模型,跑通整个流程,并学习模型微调的方法。

一、环境准备

Linux环境,GPU L20 48G,Python3.8.10。
pip该库即可。

二、数据准备

该框架实现了读取各种类型的文件,给的示例就是pdf。
在这里插入图片描述
因此准备了一些网络舆情相关的论文pdf,选择70%作为训练数据,剩下作为验证数据。都放在data文件夹下。
在这里插入图片描述

三、微调脚本编写

1.读取数据

使用SimpleDirectoryReader类读取文件。
读取到文本后,使用SentenceSplitter将一个很长的文档切分为若干块。
每一块设置的有token数和重叠token数,在
在这里插入图片描述可以自选,默认的chunk_size大小没找到在哪,重叠的是200.
在这里插入图片描述以上是库的源码实现,我们调用是很简单的。VAL_CORPUS_FPATH 我一开始以为是在load_corpus里的某个类自动保存,结果根本没有。所以自己写了导出为json的函数,是将其text数据保存了。

# 源文件 列表
my_list = [i for i in os.listdir('project_2/data') if i.endswith('pdf')]
# 随机抽取70%的数据,作为训练集
random.shuffle(my_list) # 打乱
num_to_sample = int(len(my_list) * 0.7) # 阈值
# 构造本地文件路径
training_set = [f"project_2/data/{file}" for file in my_list[:num_to_sample]] # 训练集文件list
validation_set = [f"project_2/data/{file}" for file in my_list[num_to_sample:]] # 验证集文件list# 最终形成的训练和验证语料
TRAIN_CORPUS_FPATH = 'project_2/data/corpus/train_corpus.json'
VAL_CORPUS_FPATH = 'project_2/data/corpus/val_corpus.json'# 读取pdf数据,节点
def load_corpus(files, verbose=False):if verbose:print(f"正在加载文件 {files}")reader = SimpleDirectoryReader(input_files=files)docs = reader.load_data()if verbose:print(f"已加载 {len(docs)} 个文档")parser = SentenceSplitter()nodes = parser.get_nodes_from_documents(docs, show_progress=verbose)if verbose:print(f"已解析 {

这篇关于llama_index微调BGE模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/953904

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

浅析CSS 中z - index属性的作用及在什么情况下会失效

《浅析CSS中z-index属性的作用及在什么情况下会失效》z-index属性用于控制元素的堆叠顺序,值越大,元素越显示在上层,它需要元素具有定位属性(如relative、absolute、fi... 目录1. z-index 属性的作用2. z-index 失效的情况2.1 元素没有定位属性2.2 元素处

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus