设计模式-03 设计模式-依赖倒转原则案例分析

2024-05-01 18:28

本文主要是介绍设计模式-03 设计模式-依赖倒转原则案例分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


设计模式-03 设计模式-依赖倒转原则案例分析

目录

设计模式-02 设计模式-依赖倒转原则案例分析

1.定义

2.内涵

3.案例对比

4.注意事项

5.最佳实践

6.总结


1.定义

依赖倒转原则(Dependency Inversion Principle,简称DIP)高层级的模块不能依赖底层级模块的,两种层级的模块应该依赖抽象,抽象层不能依赖具体实现层,具体实现应该依赖抽象

通俗来说,DIP 意味着:

客户端代码(高层模块)不应该直接依赖于具体实现(低层模块)。
相反,客户端代码应该依赖于一个抽象,而抽象再依赖于具体实现。

+--------------+|  客户端代码  |+--------------+|V+--------------+|    抽象类    |+--------------+|V+--------------+| 具体实现类 |+--------------+

说明:

  • 客户端代码(高层模块)依赖于抽象类,而不是具体的实现类。
  • 抽象类定义了客户端代码所需的行为,而具体实现类提供了这些行为的具体实现。
  • 客户端代码通过依赖注入接收其依赖项(抽象类)。
  • 通过使用 DIP,客户端代码与具体实现类之间的耦合最小化,从而提高了代码的灵活性、可测试性和可维护性。

                   

2.内涵

DIP 的定义出发点是:

软件的灵活性:当依赖关系是固定的时,很难在不影响其他模块的情况下修改软件。
软件的可测试性:当客户端代码直接依赖于具体实现时,很难对客户端代码进行单元测试。

3.案例对比

错误的设计,经常是依赖与具体的实现。而不是依赖与接口层。以下就具体案例进行的举例说明。


bad 设计

#include <iostream>
#include <cstdio>
#include <vector>
#include <fstream>
#include <tuple>
#include <string>using namespace std;enum class Relationship{parent,child,sibling,
};struct Person{string name;
};struct Relationships  // 底层模块
{vector<tuple<Person, Relationship, Person>> relations;void add_parent_add_child(const Person& parent, const Person& child){relations.push_back({parent, Relationship::parent, child});relations.push_back({child, Relationship::child, parent});}};struct Research  // 上层模块,依赖与底层的具体实现,而不是抽象接口,违反了依赖倒转原则
{Research(Relationships& relationships){auto& relations = relationships.relations;for(auto& [first, rel, second]: relations){if(first.name == "Hohn"  && rel == Relationship::parent){cout<<"Hohn has child :"<< second.name<< endl;}}}
};int main() {Person parent{"Hohn"};Person child1{"Dhris"},child2{"Watt"};Relationships relationships;relationships.add_parent_add_child(parent,child1);relationships.add_parent_add_child(parent,child2);Research _(relationships);return 0;
}

好的设计

#include <iostream>
#include <cstdio>
#include <vector>
#include <fstream>
#include <tuple>
#include <string>using namespace std;enum class Relationship{parent,child,sibling,
};struct Person{string name;
};struct RelationshipBrowser{virtual vector<Person> find_all_children_of(const string& name) = 0;
};struct Relationships :RelationshipBrowser // 底层模块
{vector<tuple<Person, Relationship, Person>> relations;void add_parent_add_child(const Person& parent, const Person& child){relations.push_back({parent, Relationship::parent, child});relations.push_back({child, Relationship::child, parent});}vector<Person> find_all_children_of(const string &name) override {vector<Person> result;for(auto&& [first,rel,second] : relations) {if(first.name == name && rel == Relationship::parent){result.push_back(second);}}return result;}};struct Research  // 上层模块不在依赖 Relationships ,而是依赖接口:RelationshipBrowser
{Research(RelationshipBrowser& browser){for(auto& child: browser.find_all_children_of("Hohn")){cout<<"Honh has child:"<< child.name<<endl;}}
//    Research(Relationships& relationships){
//        auto& relations = relationships.relations;
//        for(auto& [first, rel, second]: relations){
//            if(first.name == "Hohn"  && rel == Relationship::parent){
//                cout<<"Hohn has child :"<< second.name<< endl;
//            }
//        }
//    }
};int main() {Person parent{"Hohn"};Person child1{"Dhris"},child2{"Watt"};Relationships relationships;relationships.add_parent_add_child(parent,child1);relationships.add_parent_add_child(parent,child2);Research _(relationships);return 0;
}

两种设计思路输出结果一样,但是好的设计遵循了依赖倒转原则,代码更灵活

Honh has child:Dhris
Honh has child:Watt
4.注意事项


在具体开发中,应用依赖倒转原则(DIP)时需要注意以下几点:

  • 明确接口和实现之间的关系:确保接口定义了客户端代码所需的行为,而实现提供了这些行为的具体实现。
  • 使用抽象类或接口来定义抽象:避免使用具体类作为抽象,因为这会违反 DIP。
  • 通过依赖注入传递依赖项:使用依赖注入框架或手动将依赖项传递给客户端代码,而不是让客户端代码直接创建依赖项。
  • 避免循环依赖:确保依赖关系是单向的,即高层模块不依赖于低层模块,低层模块也不依赖于高层模块。
  • 考虑性能影响:在某些情况下,使用 DIP 可能会有轻微的性能开销,因此在应用 DIP 时需要权衡利弊。

5.最佳实践

DIP 有以下优点:

  • 提高代码的灵活性:通过使用抽象,我们可以轻松地更改具体实现,而无需修改客户端代码。
  • 提高代码的可测试性:通过使用抽象,我们可以对客户端代码进行单元测试,而无需依赖于具体实现。
  • 减少耦合:DIP 减少了客户端代码与具体实现之间的耦合,从而提高了代码的可维护性和可重用性。

6.总结

DIP 并不是万能的,在某些情况下可能会有一些局限性:
(1)轻微的性能开销:使用 DIP 可能会有轻微的性能开销,因为需要额外的开销来管理依赖项。
(2)过度抽象:过度抽象可能会使代码难以理解和维护。

过度抽象就会使得系统复杂化,不便于后续优化。

这篇关于设计模式-03 设计模式-依赖倒转原则案例分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/952365

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

使用maven依赖详解

《使用maven依赖详解》本文主要介绍了Maven的基础知识,包括Maven的简介、仓库类型、常用命令、场景举例、指令总结、依赖范围、settings.xml说明等,同时,还详细讲解了Maven依赖的... 目录1. maven基础1.1 简介1.2 仓库类型1.3 常用命令1.4 场景举例1.5 指令总结

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制