系统稳定性判定分析(一)---- 常系数线性系统内部稳定性

2024-05-01 15:20

本文主要是介绍系统稳定性判定分析(一)---- 常系数线性系统内部稳定性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 线性系统稳定性分析
    • 线性定常系统(线性时不变/自治系统)稳定性分析
    • 线性定常系统内部稳定性示例
  • 参考文献

  从上一节 系统稳定性的介绍中可以得知,分析系统内部稳定(Lyapunov意义下稳定)时可不考虑系统的输出情况,可直接通过系统的状态方程分析系统的稳定性。系统的状态方程根据构建形式的不同,可分为线性系统与非线性系统。如下基于由简入繁的原则,首先整理线性系统的稳定性分析过程。

本文内容主要基于Antsaklis, P. J., & Michel, A. N. (1997). Linear systems (Vol. 8). New York: McGraw-Hill. 一书。

线性系统稳定性分析

   ~~~~     线性系统根据状态方程中是否显含时间变量 t t t(状态变量本身为时间 t t t的函数,因此状态方程一定与时间 t t t有关。若状态方程中显示的包含时间 t t t的表达式,则表示状态方程显含时间变量 t t t。否则,状态方程不显含时间变量 t t t),可将线性系统划分为线性自治系统(或线性时不变系统) x ˙ = f ( x ( t ) ) , (1) \dot{\pmb{x}}=f(\pmb{x}(t)),\tag{1} x˙=f(x(t)),(1)与线性非自治系统(线性时变系统) x ˙ = f ( t , x ( t ) ) , (2) \dot{\pmb{x}}=f(t,\pmb{x}(t)),\tag{2} x˙=f(t,x(t)),(2)通常为表述简单,系统 (1) 与 (2) 可直接省略括号内的时间变量 t t t,表示为 x ˙ = f ( x ) \dot{\pmb{x}}=f(\pmb{x}) x˙=f(x) x ˙ = f ( t , x ) \dot{\pmb{x}}=f(t,\pmb{x}) x˙=f(t,x)
   ~~~~     如下首先分析线性自治系统的稳定性。

线性定常系统(线性时不变/自治系统)稳定性分析

   ~~~~     考虑如下线性时不变系统 x ˙ = A x . (3) \dot{\pmb{x}}=A\pmb{x}.\tag{3} x˙=Ax.(3)定义 x e \pmb{x}_e xe 为系统(3)平衡点,则系统(3)李雅普诺夫意义下的稳定性可通过如下定理进行判定:

定理1. 系统(3)的平衡点 x e \pmb{x}_e xe稳定的,当且仅当其系数矩阵 A A A (或者系统(3)的雅可比矩阵) 的所有特征值的实部小于等于0,且每个实部为零的特征值都有一个相关的 1 阶 Jordan 块。系统(3)的平衡点 x e \pmb{x}_e xe渐近稳定的,当且仅当其系数矩阵 A A A (或者系统(3)的雅可比矩阵) 的所有特征值的实部小于0
相反地,系统(3)的平衡点 x e \pmb{x}_e xe不稳定的,当且仅当其系数矩阵 A A A (或者其雅可比矩阵) 至少存在一个实部大于0的特征值,或者其实部为零的特征值所对应的Jordan块的阶数大于1阶。

补充: 有关特征值,Jordan块的介绍可参见矩阵分析:特征值,相似度对角化,Jordan标准形。
注: 通常我们所说的一个系统的收敛是与系统平衡点的渐近稳定有关,关于两者有如下定义:

定义1. 系统(3)的平衡点 x e \pmb{x}_e xe 是渐近稳定的当且仅当其(1) 是稳定的,(2) 当 t → ∞ t\to \infty t 时,系统(3)的解趋近于平衡点 x e \pmb{x}_e xe

线性定常系统内部稳定性示例

【示例一】分析如下系统在李雅普诺夫意义下的稳定性:
[ x ˙ 1 x ˙ 2 ] = [ 0 1 − 1 0 ] [ x 1 x 2 ] . (4) \begin{bmatrix} \dot x_1\\ \dot x_2 \end{bmatrix}=\begin{bmatrix} 0&1\\ -1&0 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\end{bmatrix}.\tag{4} [x˙1x˙2]=[0110][x1x2].(4)通过计算可以得知系统(4)的平衡点 x e = [ x 1 e , x 2 e ] T = [ 0 , 0 ] T \pmb{x}_e=[x_{1e}, x_{2e}]^T=[0, 0]^T xe=[x1e,x2e]T=[0,0]T,其特征值为 λ 1 , 2 = ± i \lambda_{1,2} = \pm i λ1,2=±i,其Jordan块为 [ i 0 0 − i ] \begin{bmatrix} i&0\\ 0&-i \end{bmatrix} [i00i]。根据定理1,系统(4)的平衡点 x e = [ x 1 e , x 2 e ] T = [ 0 , 0 ] T \pmb{x}_e=[x_{1e}, x_{2e}]^T=[0, 0]^T xe=[x1e,x2e]T=[0,0]T是稳定的。系统(4)在初值为(0,0)条件下的运行轨迹如下所示:
在这里插入图片描述
系统(4)在初值为(0,1)条件下的运行轨迹如下所示:
在这里插入图片描述
结合以上两图可知,系统(4)的平衡点是稳定的,整体运行轨迹在平衡点的一定范围内波动。

【示例二】分析如下系统在李雅普诺夫意义下的稳定性:
[ x ˙ 1 x ˙ 2 ] = [ 0 1 0 0 ] [ x 1 x 2 ] . (5) \begin{bmatrix} \dot x_1\\ \dot x_2 \end{bmatrix}=\begin{bmatrix} 0&1\\ 0&0 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\end{bmatrix}.\tag{5} [x˙1x˙2]=[0010][x1x2].(5)通过计算可以得知系统(5)的平衡点 x e = [ x 1 e , x 2 e ] T = [ 0 , 0 ] T \pmb{x}_e=[x_{1e}, x_{2e}]^T=[0, 0]^T xe=[x1e,x2e]T=[0,0]T,其特征值为 λ 1 , 2 = 0 \lambda_{1,2} = 0 λ1,2=0,其Jordan块为 [ 0 1 0 0 ] \begin{bmatrix} 0&1\\ 0&0 \end{bmatrix} [0010],特征值0所对应的Jordan块的阶数为2。根据定理1,系统(5)的平衡点 x e = [ x 1 e , x 2 e ] T = [ 0 , 0 ] T \pmb{x}_e=[x_{1e}, x_{2e}]^T=[0, 0]^T xe=[x1e,x2e]T=[0,0]T是不稳定的。系统(5)在初值为(0,1)条件下的运行轨迹如下所示:
在这里插入图片描述
【示例三】分析如下系统在李雅普诺夫意义下的稳定性:
[ x ˙ 1 x ˙ 2 ] = [ 2.8 9.6 9.6 − 2.8 ] [ x 1 x 2 ] . (6) \begin{bmatrix} \dot x_1\\ \dot x_2 \end{bmatrix}=\begin{bmatrix} 2.8&9.6\\ 9.6&-2.8 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\end{bmatrix}.\tag{6} [x˙1x˙2]=[2.89.69.62.8][x1x2].(6)通过计算可以得知系统(6)的平衡点 x e = [ x 1 e , x 2 e ] T = [ 0 , 0 ] T \pmb{x}_e=[x_{1e}, x_{2e}]^T=[0, 0]^T xe=[x1e,x2e]T=[0,0]T,其特征值为 λ 1 , 2 = ± 10 \lambda_{1,2} = \pm10 λ1,2=±10,其Jordan块为 [ 10 0 0 − 10 ] \begin{bmatrix} 10&0\\ 0&-10 \end{bmatrix} [100010],存在一个实部大于0的特征值。根据定理1,系统(6)的平衡点 x e = [ x 1 e , x 2 e ] T = [ 0 , 0 ] T \pmb{x}_e=[x_{1e}, x_{2e}]^T=[0, 0]^T xe=[x1e,x2e]T=[0,0]T是不稳定的。系统(6)在初值为(0,1)条件下的运行轨迹如下所示:在这里插入图片描述
【示例四】分析如下系统在李雅普诺夫意义下的稳定性:
[ x ˙ 1 x ˙ 2 ] = [ − 1 0 − 1 − 2 ] [ x 1 x 2 ] . (7) \begin{bmatrix} \dot x_1\\ \dot x_2 \end{bmatrix}=\begin{bmatrix} -1&0\\ -1&-2 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\end{bmatrix}.\tag{7} [x˙1x˙2]=[1102][x1x2].(7)通过计算可以得知系统(7)的平衡点 x e = [ x 1 e , x 2 e ] T = [ 0 , 0 ] T \pmb{x}_e=[x_{1e}, x_{2e}]^T=[0, 0]^T xe=[x1e,x2e]T=[0,0]T,其特征值为 λ 1 = − 1 \lambda_1= -1 λ1=1 λ 2 = − 2 \lambda_2= -2 λ2=2其Jordan块为 [ − 1 0 0 − 2 ] \begin{bmatrix} -1&0\\ 0&-2 \end{bmatrix} [1002],存在一个实部大于0的特征值。根据定理1,系统(7)的平衡点 x e = [ x 1 e , x 2 e ] T = [ 0 , 0 ] T \pmb{x}_e=[x_{1e}, x_{2e}]^T=[0, 0]^T xe=[x1e,x2e]T=[0,0]T是渐近稳定的。系统(7)在初值为(0,1)条件下的运行轨迹如下所示:
在这里插入图片描述

注: 上述四个示例的代码如下,需适当修改函数中的状态方程表达式,以及主函数中的时间变量的区间范围。

function dxdt = vdp1(t,x)%dxdt = [x(2);0];
%  dxdt = [x(2);-x(1)];
% dxdt = [-x(1);-x(1)-2*x(2)]; %dxdt = [x(2);-2*sin(x(1))];dxdt = [2.8*x(1)+9.6*x(2);9.6*x(1)-2.8*x(2)];
end
%[t,y] = ode45(odefun,tspan,y0)
[t,x] = ode45(@vdp1,[0 20],[0,1]);
plot(t,x)
xlabel('Time t');
ylabel('Solution x');
legend('x_1','x_2')

参考文献

[1] Antsaklis, P. J., & Michel, A. N. (1997). Linear systems (Vol. 8). New York: McGraw-Hill.
[2] 线性系统稳定性一般定理、齐次线性系统稳定性
[3] 矩阵分析:特征值,相似度对角化,Jordan标准形

这篇关于系统稳定性判定分析(一)---- 常系数线性系统内部稳定性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/952011

相关文章

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

Debian如何查看系统版本? 7种轻松查看Debian版本信息的实用方法

《Debian如何查看系统版本?7种轻松查看Debian版本信息的实用方法》Debian是一个广泛使用的Linux发行版,用户有时需要查看其版本信息以进行系统管理、故障排除或兼容性检查,在Debia... 作为最受欢迎的 linux 发行版之一,Debian 的版本信息在日常使用和系统维护中起着至关重要的作

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实