AI大模型系列:自然语言处理,从规则到统计的演变

2024-04-30 23:04

本文主要是介绍AI大模型系列:自然语言处理,从规则到统计的演变,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI大模型系列文章目录

  1. 文明基石,文字与数字的起源与演变
  2. 自然语言处理,从规则到统计的演变

自然语言处理,从规则到统计的演变


  自然语言处理(Natural Language Processing,NLP)是人工智能的一个重要分支,主要研究如何让计算机理解、解释和生成人类语言。从自然语言处理的字面上来看,最重要的是“语言”二字,语言则是通过语法规则将一个个毫无联系的文字、数字和字母串联起来的。

  文字的出现是因为咱们祖先为了记录所见所闻和所思所想(传送门),咱们的祖先再将文字、字母和数字进行信道编码就成为了我们日常使用的语言。简单来讲,我们把一个要表达的意思,通过中文的一句话表达出来,就是在头脑中用中文的编码方式对其进行编码,然后得到一串汉字。对方如果懂得中文,在接收到之后就可以在头脑中使用中文的解码方式来解码,进而获得说话人想要表达的信息。

  世界上存在的每一种语言都有自己独有的语法规则,从而都拥有自己独有的编解算法,即这就是语言在数学上的本质。

人类还是机器?

  1946年,冯·诺伊曼体系的现代计算机出现以后,计算机在很多领域的很多工作做得都比人还好。既然如此,当时的科学家们就提出了计算机能不能懂得自然语言的课题,由此开启了自然语言处理研究的漫漫长路。

  最早提出机器智能设想的是,计算机科学之父的阿兰·图灵(Alan Mathison Turing,1912年6月23日—1954年6月7日),没错这是电影《模仿游戏》中的那个阿兰·图灵(传送门)。1950年他在《思想》杂志上发表了一篇题为“计算的机器和智能”的论文,并在论文中提出了一种验证机器是否有智能的方法:让人和机器进行交流,如果人无法判断自己交流的对象是人还是机器,那么就说明这个机器拥有了智能。这个方法被后人称为“图灵测试”,自此拉开了自然语言处理的序幕。

  自然语言处理发展虽然经过几十年的发展,但基本上可分为语言语法规则、数学模式统计和深度学习这么几个阶段。

探索

  时间回到1950年代到1970年代,当时的学术界对人工智能和自然语言处理的统一认识就是:要让机器完成翻译或者语音识别等只有人类才能做的事情,就必须先让计算机理解自然语言,而要做到这一点就必须让计算机拥有类似人类这样的智能。

  之所以会这样的认为,是因为咱们的大脑在解决问题或者学习技能时,首先会寻找与要解决或学习事物类似的事物进行模仿研究,进而完成仿制。正如有人认为怀特兄弟发明飞机仅仅是通过模仿鸟儿飞行,但是殊不知怀特兄弟成功发明飞机靠的不是仿生学而是空气动力学。同样在自然语言处理早期咱们的科学家也就走了弯路,企图使用仿生学来让计算机拥有处理语言的能力。

  基于上述共识科学家在分析语句和获取语义上花费了大量的功夫,并在1954年,乔治城大学和IBM合作开发了第一个机器翻译系统,这个机器翻译系统的底层原理就是通过分析语句、获取语义然后使用语法规则来处理语言,并且其运行几乎依赖于手工编写的规则来解析和处理语言。
image.png
  此阶段虽然有不少的研究成果,但是整体的研究成果乏善可陈。因为世界上语言众多,哪怕只是覆盖一种语言的语法规则的工作量也是巨大的,并且还存在方言、多义性和上下文的问题。自此当时的科学家渐渐地丧失了信心,自然语言发展也进入了蛰伏期。

破局

  1970年代基于规则的句法分析走到了尽头,但是自然语言处理的研究并没有因此停滞不前,历史的齿轮再一次转到,佛里德里克·贾里尼克(Frederick Jelinek)和他领导的IBM华生实验室(T.J.Watson)摒弃使用语法规则来解决语音识别问题,开始转而使用基于统计的方法,一下子就将IBM的语音识别率从70%提升到了90%,同时语音识别的规模也从几百单词上升到了几万单词,这就表示语音识别有从实验室走向实际应用的可能,同时也表示在自然语言处理上有了新的研究方向。

  虽然贾里尼克使用统计学的方法在自然语言处理上取得了突破,但是碍于当时算力不足和顽固派的阻挠整体发展还是相当的缓慢。虽然在1988年,IBM的彼得·布朗(Peter Brown)等人提出了基于统计的机器翻译方法,同样也碍于算力不足和没有足够强大的模型从而没有得到突破。

  1990年代统计方法开始成为自然语言处理的主流方法,并在1990年美国计算语言学会(ACL)成立了。同时在隐马尔可夫模型的加持,推动了自然语言处理研究发展进入了快车道。1993年,第一个基于统计的机器翻译系统IBM Model 1发布。这个时期的自然语言处理系统开始使用大量语料库进行训练,提高系统的准确性和鲁棒性。

  隐马尔可夫模型被任务是解决大多数自然语言处理问题最为快速、有效的方法,在成功地解决了复杂的语音识别、机器翻译等问题。最关键的是它并不是一个复杂的数学模型,理解和实现的难度都不大。

  2000年-2010年这十年深度学习崛起,并开始在自然语言处理中崭露头角。2001年,神经概率语言模型(Neural Probabilistic Language Model)被提出,为后来的深度学习在自然语言处理中的应用奠定了基础。并经过多年的研究发展,2018年谷歌又一次打出了王炸—BERT(Bidirectional Encoder Representations from Transformers)模型刷新了多个自然语言处理任务的记录。此后自然语言处理领域继续快速发展,各种预训练模型如GPT、RoBERTa、XLNet等不断刷新纪录。

  同时,自然语言处理开始与其他领域如计算机视觉、语音识别等结合,形成了多模态学习的趋势。此外,自然语言处理技术开始在工业界得到广泛应用,如智能客服、机器翻译、情感分析等。


一键三连,让我的信心像气球一样膨胀!

这篇关于AI大模型系列:自然语言处理,从规则到统计的演变的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950147

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了