代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集

本文主要是介绍代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01背包问题,你该了解这些! 

46. 携带研究材料(第六期模拟笔试) (kamacoder.com)

代码随想录 (programmercarl.com)

  1. 确定dp数组(dp table)以及下标的含义:dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少
  2. 确定递推公式:

    两个方向推出来dp[i][j],

    1. 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
    2. 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
  3. dp数组如何初始化:

    首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

    动态规划-背包问题2

    在看其他情况。

    状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

    dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

    那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

    当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

    动态规划-背包问题7

  4. 确定遍历顺序:

    dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

    dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

    动态规划-背包问题5

    再来看看先遍历背包,再遍历物品呢,如图:

    动态规划-背包问题6

    大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

    但先遍历物品再遍历背包这个顺序更好理解

  5. 举例推导dp数组:

题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。 

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

输入描述

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。 

第三行包含 M 个正整数,代表每种研究材料的价值。

输出描述

输出一个整数,代表小明能够携带的研究材料的最大价值。

注意代码为ACM模式,输入m为物品数横轴,n为重量,作为纵轴,矩阵尺寸应为mx(n+1),因为n多出了需要考虑重量是0的情况。

m, n = map(int, input().split())weights = list(map(int, input().split()))
values = list(map(int, input().split()))
#initialize
dp = [[0]*(n+1) for _ in range(m)]
#when n = 0, dp[i][0] = 0
for j in range(n+1):if weights[0]<=j:dp[0][j] = values[0]else:dp[0][j] = 0
def bag():for i in range(1,m):for j in range(1,n+1):if j<weights[i]:dp[i][j] = dp[i-1][j]else:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i]]+values[i])return dp[m-1][n]
print(bag())

01背包问题,你该了解这些! 滚动数组  

  1. 确定dp数组的定义:在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
  2. 一维dp数组的递推公式:两种可能,一种是不放入物品i,及自身的价值dp[j],一种是放入物品i,dp[j-weights[i]]+values[i],所以dp[j] = max(dp[j], dp[j-weigts[i]]+values[i])
  3. 一维dp数组如何初始化

    关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

    dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

    那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

    看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

    这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

    那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了

  4. 一维dp数组遍历顺序:从后向前,避免重复添加上一层数量,先遍历物品,再遍历背包。
  5. 举例推导dp数组

ACM代码:

m, n = map(int, input().split())
weights = list(map(int, input().split()))
values = list(map(int, input().split()))
#initialize
dp = [0]*(n+1) #1-dimensional array
def bag():for i in range(m):for j in range(n,weights[i]-1, -1):dp[j] = max(dp[j], dp[j-weights[i]]+values[i])return dp[n]
print(bag())

416. 分割等和子集 

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

解题思路:

本题可以使用回溯或背包解答。可以将其看作一个nums,如果该数组能得到一个sum(nums)//2的子集,该数组可以拆成两个一样的子数集且和相等,return True。

类似于背包问题的解题思路,

1. 确认dp数组的定义:dp[j]当容量为j时的最大数之和(最大价值),需要注意的是,这里物品i和价值均为nums[i].

2. 一维dp推导公式:dp[j] = max(dp[j], dp[j-weights[i]]+values[i])

3. 一维dp数组如何初始化:dp[0] = 0

4. 一维dp数组遍历顺序:从后向前,避免重复添加上一层数量,先遍历物品,再遍历背包

5. 举例推导dp数组

代码:

class Solution:def canPartition(self, nums: List[int]) -> bool:if sum(nums)%2 != 0:return Falsetarget = sum(nums)//2#target is the largest bagweightdp = [0]*(target+1)for i in range(len(nums)):for j in range(target, nums[i]-1, -1):dp[j] = max(dp[j], dp[j-nums[i]]+nums[i])if dp[target] == target:return Truereturn False

这篇关于代码随想录Day 36|Python|Leetcode|01背包问题,你该了解这些! ● 01背包问题,你该了解这些! 滚动数组 ● 416. 分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949910

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm